Preview

Journal of the Russian Universities. Radioelectronics

Advanced search

А Method and a Device for Evaluating the Functional State of Microcirculatory-Tissue Systems of the Human Body Based on Multiparametric Optical Diagnostics

https://doi.org/10.32603/1993-8985-2020-23-4-77-91

Abstract

Introduction. Violations of the microcirculatory-tissue systems of the human body play a key role in the pathogenesis of various diseases complications. However, there are a few unresolved methodological and instrumental problems with non-invasive monitoring of microcirculatory function and metabolic disorders associated with insufficient accuracy, reproducibility and informativeness of diagnostic results. The proposed approach of multiparametric optical diagnostics, when optical non-invasive technologies are used in combination, can be a promising tool that improves the sensitivity and accuracy of detecting microcirculatory and metabolic disorders at an early stage, which is important for the diagnosis and treatment of diseases of various profiles.

Aim. Development of a method and device for assessing the functional state of microcirculatory-tissue systems of the human body based on multiparametric optical diagnostics and assessment of its diagnostic potential in clinical practice.

Materials and methods. In the paper, theories of radiation transfer, applied mathematical statistics and clinical research methods are used. The statistical indicators of the developed diagnostic methods are given, the principle of the device construction is described.

Results. An original method and principle for constructing a device for assessing the functional state of microcirculatory-tissue systems of the human body based on multiparametric optical diagnostics has been developed.

Conclusion. The present work presents a method and device for assessing the functional state of microcirculatory-tissue systems of the human body based on this approach. The basic principles of each of the diagnostic channels (laser Doppler flowmetry, fluorescence spectroscopy and diffuse reflectance spectroscopy) are described. Examples of the clinical application of the described device in various fields of medicine (endocrinology, rheumatology, minimally invasive surgery) are presented. The method proposed in this article and principle for constructing a device with the possibility of its technical adaptation by developing additional probes for specific tasks of biomedical research makes optical non-invasive diagnostics affordable and increases its information content.

About the Author

A. V. Dunaev
Orel State University n. a. I. S. Turgenev
Russian Federation
Andrey V. Dunaev, Ph.D., Docent (2002), Docent of Instrumentation (2007), Metrology and Certification Department, Leading Researcher of Research and Development Center of Biomedical Photonics, 95 Komsomolskaya St., Orel 302026, Russia


References

1. Krupatkin A. I., Sidorov V. V. Funkcional'naja diagnostika sostojanija mikrocirkuljatornotkanevyh sistem: kolebanija, informacija, nelinejnost': rukovodstvo dlja vrachej [Functional diagnostics of the state of microcirculatory-tissue systems: fluctuations, information, nonlinearity: a guide for doctors]. Moskva: Knizhnyj dom «LIBROKOM», 2013, 496 p. (In Russ.)

2. Rahman S., Rahman T., Ismail A. A. S., Rashid A. R. A. Diabetes-associated macrovasculopathy: Pathophysiology and pathogenesis. Diabetes, Obesity and Metabolism. 2007, vol. 9, no. 6, pp. 767–780. doi: 10.1111/j.1463-1326.2006.00655.x

3. Yushkov P. V., Opalenov K. V. Morfogenez mikroangiopatiy pri sakharnom diabete. Diabetes mellitus. 2001, vol. 4, no. 1, pp. 53-56. (In Russ.) doi: 10.14341/2072-0351-6109

4. Blaginina I. I. The violation of the microcirculation system depending on the activity of the inflammatory process in patients with rheumatoid arthritis. Ukraїns'kij revmatologіchnij zhurnal [Ukrainian rheumatology jour-nal]. 2008, pp. 30–33. (In Russ.)

5. Stinco G., Lautieri S., Valent F., Patrone P. Cutaneous vascular alterations in psoriatic patients treated with cyclosporine. Acta Derm. Venereol, 2007, vol. 87, no. 2, pp. 152–154. doi: 10.2340/00015555-0216

6. Deban L., Correale C., Vetrano S., Malesci A., Danese S. Multiple pathogenic roles of microvasculature in inflammatory bowel disease: A jack of all trades. American Journal of Pathology. 2008, vol. 172, no. 6, pp. 1457–1466. doi: 10.2353/ajpath.2008.070593

7. Rodin A. V., Pleshkov V. G. Intraoperative assessment of intestinal viability in acute intestinal obstruction. Vestnik Smolenskoj gosudarstvennoj medicinskoj akademii [Bulletin of the Smolensk State Medical Academy]. 2016, vol. 15, no. 1. (In Russ.)

8. Bigio I. J., Mourant J. R. Optical biopsy. Encycl. Opt. Eng. 2003, vol. 1577, pp. 1593. doi: 10.1081/E-EOE120009717

9. Zakharov V. P., Bratchenko I. A., Myakinin O. O., Artemyev D. N., Kornilin D. V., Kozlov S. V. E., Moryatov A. A. Multimodal diagnosis and visualisation of oncologic pathologies. Quantum Electronics. 2014, vol. 44, no. 8, pp. 726–731. doi: 10.1070/QE2014v044n08ABEH015545

10. Borisova E., Troyanova P., Pavlova P., Avramov L. Diagnostics of pigmented skin tumors based on laserinduced autofluorescence and diffuse reflectance spectroscopy. Quantum Electron. 2008, vol. 38, no. 6, pp. 597–605. doi: 10.1070/QE2008v038n06ABEH013891

11. Greenman R. L., Panasyuk S., Wang X., Lyons T. E., Dinh T., Longoria L., Giurini J. M., Freeman J., Khaodhiar L., Veves A. Early changes in the skin microcirculation and muscle metabolism of the diabetic foot. Lancet. 2005, vol. 366, no. 9498, pp. 1711–1717. doi: 10.1016/S0140-6736(05)67696-9

12. Zhu C., Chen S., Chui C. H. K., Tan B. K., Liu Q. Early prediction of skin viability using visible diffuse reflectance spectroscopy and autofluorescence spectroscopy. Plast. Reconstr. Surg. 2014, vol. 134, no. 2, pp. 240e-247e. doi: 10.1097/PRS.0000000000000399

13. Fredriksson I., Fors C., Johansson J. Laser doppler flowmetry – a theoretical framework. Dep. Biomed. Eng. Linköping Univ. 2007, pp. 6–7.

14. Kvernmo H. D., Stefanovska A., Kirkebøen K. A., Kvernebo K. Oscillations in the human cutaneous blood perfusion signal modified by endothelium-dependent and endothelium-independent vasodilators. Microvasc. Res. 1999, vol. 57, no. 3, pp. 298–309. doi: 10.1006/mvre.1998.2139

15. Söderström T., Stefanovska A., Veber M., Svensson H. Involvement of sympathetic nerve activity in skin blood flow oscillations in humans. Am. J. Physiol. 2003, vol. 284, no. 5, pp. H1638–H1646. doi: 10.1152/ajpheart.00826.2000

16. Krupatkin A. I. The influence of the sympathetic innervation on the skin microvascular tone and blood flow oscillations. Human physiology. 2006, vol. 32, no. 5, pp. 584-592. doi: 10.1134/S0362119706050136

17. Krupatkin A. I. Blood flow oscillations at a frequency of about 0.1 Hz in skin microvessels do not reflect the sympathetic regulation of their tone. Human physiology. 2009, vol. 35, no. 2 pp. 183-191. doi: 10.1134/S036211970902008X

18. Roustit M., Cracowski J.-L. Assessment of endothelial and neurovascular function in human skin microcirculation. Trends Pharmacol. Sci. 2013, vol. 34, no. 7, pp. 373–384. doi: 10.1016/j.tips.2013.05.007

19. Bornmyr S., Castenfors J., Evander E., Olsson G., Hjortsberg U., Wollmer P. Effect of local cold provocation on systolic blood pressure and skin blood flow in the finger. Clin. Physiol. 2001, vol. 21, no. 5, pp. 570–575. doi: 10.1046/j.1365-2281.2001.00364.x

20. Sagaidachnyi A. A. Reactive hyperemia test: methods of analysis, mechanisms of reaction and prospects. Regional blood circulation and microcirculation. 2018, vol. 17, no. 3, pp. 5–22. (In Russ.) doi: 10.24884/1682-6655-2018-17-3-5-22

21. Rogatkin D. A. Physical fundamentals of in vivo laser clinical fluorescence spectroscopy. Medicinskaja fizika [Medical physics]. 2014, vol. 4, no. 64, pp. 78–96. (In Russ.)

22. Georgakoudi I., Jacobson B. C., Müller M. G., Sheets E. E., Badizadegan K., Carr-Locke D. L., Crum C. P., Boone C. W., Dasari R. R., Van Dam J., Feld M. S. NAD(P)H and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes. Cancer Res. 2002, vol. 62, no. 3, pp. 682–687.

23. Sivabalan S., Vedeswari C. P., Jayachandran S., Koteeswaran D., Pravda C., Aruna P., Ganesan S. In vivo native fluorescence spectroscopy and nicotinamide adinine dinucleotide/flavin adenine dinucleotide reduction and oxidation states of oral submucous fibrosis for chemopreventive drug monitoring. J. Biomed. Opt. 2010, vol. 15, no. 1, pp. 017010. doi: 10.1117/1.3324771

24. Fokkens B. T., Smit A. J. Skin fluorescence as a clinical tool for non-invasive assessment of advanced glycation and long-term complications of diabetes. Glycoconj. J. 2016, vol. 33, no. 4, pp. 527–535. doi: 10.1007/s10719-016-9683-1

25. Galkina E. M., Utc S. R. Fluorescence diagnosis in dermatology. Saratovskij nauchno-medicinskij zhurnal [Saratov Journal of Medical Scientific Research]. 2013, vol. 9, no. 3. (In Russ.)

26. Uk K., Berezin V. B., Papayan G. V., Petrishchev N. N., Galagudza M. M. Spectrometer for fluorescence–reflection biomedical research. Journal of Optical Technology. 2013, vol. 80, no. 1, pp. 40-48. doi: 10.1364/JOT.80.000040

27. Tuchin V. V. Opticheskaja biomedicinskaja diagnostika: v 2-h t.: uchebnoe izdanie [Optical biomedical diagnostics: in 2 volumes: textbook]. 2007, 559 p. (In Russ.)

28. Anand S., Sujatha N., Narayanamurthy V. B., Seshadri V., Poddar R. Diffuse reflectance spectroscopy for monitoring diabetic foot ulcer – A pilot study. Opt. Lasers Eng. 2014, vol. 53, pp. 1–5. doi: 10.1016/j.optlaseng.2013.07.020

29. Bradley R. S., Thorniley M. S. A review of attenuation correction techniques for tissue fluorescence. J. R. Soc. Interface. 2006, vol. 3, no. 6, pp. 1. doi: 10.1098/rsif.2005.0066

30. Zherebtsov E. A., Zherebtsova A. I., Doronin A., Dunaev A. V., Podmasteryev K. V., Bykov A., Meglinski I. Combined use of laser Doppler flowmetry and skin thermometry for functional diagnostics of intradermal finger vessels. J. Biomed. Opt. 2017, vol. 22, no. 4, pp. 40502. doi: 10.1117/1.JBO.22.4.040502

31. Potapova E. V., Dremin V. V., Zherebtsov E. A., Makovik I. N., Zharkikh E. V., Dunaev A. V., Pilipenko O. V., Sidorov V. V., Krupatkin A. I. A Complex Approach to Noninvasive Estimation of Microcirculatory Tissue Impairments in Feet of Patients with Diabetes Mellitus using Spectroscopy. Optics and Spectroscopy. 2017, vol. 123, no. 6, pp. 955–964. doi: 10.1134/S0030400X1712013X

32. Kim S. W., Kim S. C., Nam K. C., Kang E. S., Im J. J., Kim D. W. A new method of screening for diabetic neuropathy using laser Doppler and photoplethysmography. Med Biol Eng Comput. 2008, vol. 46, no. 1, pp. 61-67. doi: 10.1007/s11517-007-0257-z

33. Zherebtsova A. I., Zherebtsov E. A., Dunaev A. V., Podmasteryev K. V., Koskin A. V., Pilipenko O. V. A Method and a Device for Diagnostics of the Functional State of Peripheral Vessels of the Upper Limbs. Biomedical Engineering. 2017, vol. 51, no. 1, pp. 46-51. doi: 10.1007/s10527-017-9682-y

34. Makovik I. N., Dunaev A. V., Dremin V. V., Krupatkin A. I., Sidorov V. V., Khakhicheva L. S., Muradyan V. F., Pilipenko O. V., Rafailov I. E., Litvinova K. S. Detection of angiospastic disorders in the microcirculatory bed using laser diagnostics technologies. J. Innov. Opt. Health Sci. 2018, vol. 11, no. 01, pp. 1750016. doi: 10.1142/S179354581750016X

35. Maga P., Henry B. M., Kmiotek E. K., Gregorczyk-Maga I., Kaczmarczyk P., Tomaszewski K. A., Niżankowski R. Postocclusive Hyperemia Measured with Laser Doppler Flowmetry and Transcutaneous Oxygen Tension in the Diagnosis of Primary Raynaud’s Phenomenon: A Prospective, Controlled Study. Biomed Res. Int. 2016, vol. 2016, pp. 9645705. doi: 10.1155/2016/9645705.36

36. Zherebtsova A. I., Dremin V. V., Makovik I. N., Zherebtsov E. A., Dunaev A. V., Goltsov A., Sokolovski S. G., Rafailov E. U. Multimodal Optical Diagnostics of the Microhaemodynamics in Upper and Lower Limbs. Front. Physiol. 2019, vol. 10, art. 416. doi: 10.3389/fphys.2019.00416

37. Kandurova K., Dremin V., Zherebtsov E., Potapova E., Alyanov A., Mamoshin A., Ivanov Y., Borsukov A., Dunaev A. Fiber-Optic System for Intraoperative Study of Abdominal Organs during Minimally Invasive Surgical Interventions. Appl. Sci. 2019, vol. 9, no. 2, art. 217. doi: 10.3390/app9020217

38. Kandurova K., Potapova E., Shupletsov V., Kozlov I., Seryogina E., Dremin V., Zherebtsov E., Alekseyev A., Mamoshin A., Dunaev A.Optical fine-needle biopsy approach for intraoperative multimodal diagnostics in minimally invasive abdominal surgery. Proc. SPIE. 2019, vol. 11079, pp. 1107948. doi: 10.1117/12.2526747


Review

For citations:


Dunaev A.V. А Method and a Device for Evaluating the Functional State of Microcirculatory-Tissue Systems of the Human Body Based on Multiparametric Optical Diagnostics. Journal of the Russian Universities. Radioelectronics. 2020;23(4):77-91. (In Russ.) https://doi.org/10.32603/1993-8985-2020-23-4-77-91

Views: 979


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1993-8985 (Print)
ISSN 2658-4794 (Online)