Modular Design of Interfaces in Nanostructures from Quasicrystalline Blocks
https://doi.org/10.32603/1993-8985-2025-28-2-80-93
Abstract
Introduction. Aperiodic order offers the possibility of creating new materials and structures with nonstandard properties. Active research is currently underway to obtain materials from non-atom building blocks, materials and elements based on aperiodic deterministic structures, photonic crystals and quasicrystals, and metamaterials. In the absence of natural analogues, the development of theoretical principles for the targeted rational design of their structures plays an important role. An important requirement consists in combining subunits and building blocks into a complex hierarchical nanostructure such that the local order would change only slightly when passing through interface regions. A possible solution to this problem is epitaxial matching between individual layers of the nanostructure. More complex structures are built on the principles of modular design. Previously, the principles of modular design have not been applied to quasicrystalline structures.
Aim. Apply the general principles of modular design to hierarchical structures containing quasicrystalline blocks.
Materials and methods. The structure of icosahedral quasicrystals was studied by computer simulation within the unit cell concept. The modular design of interfaces was based on the preliminary construction of a 3D icosahedral packing followed by cutting out those 2D fragments that intersect along common chains of equivalent nodes. The layers cut from quasicrystalline packings perpendicular to the symmetry axes of the icosahedron contain structurally similar fragments of identical subunits, separated by alternating long and short spaces in accordance with the LS Fibonacci sequence. Projection of icosahedral structure elements onto a kinked surface provides a coherent cross-linking of fragments with different symmetries by using the modular design of nanostructures from quasicrystalline blocks.
Results. The possibility of coherent cross-linking of fragments with different symmetries, which appears to be incompatible from the standpoint of classical theory, using the modular design of nanostructures from quasicrystalline blocks is confirmed.
Conclusion. Examples of cross-linking of alternating layers with 2, 3, and 5-fold symmetries into a single hierarchical nanostructure without a significant violation of the local order when passing through interface regions are presented.
About the Authors
A. E. MadisonRussian Federation
Alexey E. Madison, Cand. Sci. (Phys.-Math.) (1994), Associate Professor (2000), Winner of the Award of the International Academic Publishing Company MAIK "Nauka/Interperiodica" (Pleiades Publishing, Inc.) for the best scientific publication (2002), Leading Researcher
16, Soyuza Pechatnikov St., St Petersburg 190121
P. A. Madison
Russian Federation
Pavel A. Madison, Cand. Sci. (Phys.-Math.) (2024), Assistant Professor of the Department of Micro- and Nanoelectronics
5 F, Professor Popov St., St Petersburg 197022
V. A. Moshnikov
Russian Federation
Vyacheslav A. Moshnikov, Dr Sci. (Phys.-Math.) (1997), Professor (1999), Honorary Worker of Higher Professional Education of the Russian Federation (2007), Professor of the Department of Micro- and Nanoelectronics
5 F, Professor Popov St., St Petersburg 197022
A. V. Solomonov
Russian Federation
Alexander V. Solomonov, Dr Sci. (Phys.-Math.) (2000), Professor (2002), Professor of the Department of Micro- and Nanoelectronics, Distinguished Professor
5 F, Professor Popov St., St Petersburg 197022
References
1. Shechtman D., Blech I., Gratias D., Cahn J. W. Metallic Phase with Long-Range Orientational Order and No Translational Symmetry. Phys. Rev. Let. 1984, vol. 53, no. 20, pp. 1951–1953. doi: 10.1103/PhysRevLett.53.1951
2. Dyson F. Birds and Frogs. Notices of the American Mathematical Society. 2009, vol. 56, no. 2, pp. 212–223.
3. Dubois J. M. Properties- and Applications of Quasicrystals and Complex Metallic Alloys. Chemical Society Reviews. 2012, vol. 41, iss. 20, pp. 6760–6777. doi: 10.1039/C2CS35110B
4. Maciá E. Optimizing the Thermoelectric Efficiency of Icosahedral Quasicrystals and Related Complex Alloys. Phys. Rev. B. 2009, vol. 80, no. 20, art. no. 205103. doi: 10.1103/PhysRevB.80.205103
5. Stadnik Z. M. Magnetic Properties of Quasicrystals and Their Approximants. Handbook of Magnetic Materials. 2013, vol. 21, pp. 77–130. doi: 10.1016/B978-0-444-59593-5.00002-7
6. Kenzari S., Bonina D., Dubois J. M. Fournée V. Complex Metallic Alloys as New Materials for Additive Manufacturing. Science and Technology of Advanced Materials. 2014, vol. 15, no. 2, art. no. 024802. doi: 10.1088/1468-6996/15/2/024802
7. Kamiya K., Takeuchi T., Kabeya N., Wada N., Ishimasa T., Ochiai A., Deguchi K., Imura K., Sato N. K. Discovery of superconductivity in quasicrystal. Nature Communications. 2018, vol. 9, no. 1, art. no. 154. doi: 10.1038/s41467-017-02667-x
8. Shveikin G. P., Ivanovskii A. L. The Chemical Bonding and Electronic Properties of Metal Borides. Russ. Chem. Rev. 1994, vol. 63, no. 9, pp. 711–734. doi: 10.1070/RC1994v063n09ABEH000114
9. Kimura K., Hori A., Takeda M., Yamashita H., Ino H. Possibility of Semiconducting Quasicrystal in Boron-Rich Solids. J. of Non-Crystalline Solids. 1993, vol. 153–154, pp. 398–402. doi: 10.1016/0022-3093(93)90382-8
10. Takahashi T., Kitahara K., Katsura Y., Okada J., Matsushita Y., Kimura K. Search for the Boron Quasicrystal by First-Principle-Calculation. Solid State Sciences. 2020, vol. 108, art. no. 106377. doi: 10.1016/j.solidstatesciences.2020.106377
11. Haberl B., Strobel T. A., Bradby J. E. Pathways to Exotic Metastable Silicon Allotropes. Appl. Phys. Rev. 2016, vol. 3, art. no. 040808. doi: 10.1063/1.4962984
12. Dmitrienko V. E., Kléman M. Icosahedral Order and Disorder in Semiconductors. Philosophical Magazine Let. 1999, vol. 79, no. 6, pp. 359–367. doi: 10.1080/095008399177200
13. Oganov A. R., Glass C. W. Crystal structure prediction using ab initio evolutionary techniques: Principles and applications. J. Chemical Physics. 2006, vol. 124, iss. 24, art. no. 244704. doi: 10.1063/1.2210932
14. Wagner J., Núñez-Valdez M. Ab Initio Study of Band Gap Properties in Metastable BC8/ST12 SixGe1–x Alloys. Appl. Phys. Let. 2020, vol. 117, art. no. 032105. doi: 10.1063/5.0010311
15. Zhang X., Wang Y., Lv J., Zhu C., Li Q., Zhang M., Li Q., Ma Y. First-principles structural design of superhard materials. J. of Chemical Physics. 2013, vol. 138, no. 11, art. no. 114101. doi: 10.1063/1.4794424
16. Shevchenko V. Ya., Madison A. E. Icosahedral Diamond. Glass Physics and Chemistry. 2006, vol. 32, no. 1, pp. 118–121. doi: 10.1134/S1087659606010160
17. Shevchenko V. Ya., Madison A. E., Mackay A. L. Coherent coexistence of nanodiamonds and carbon onions in icosahedral core-shell particles. Acta Crystallographica Section A: Foundations and Advances. 2007, vol. 63, no. 2, pp. 172–176. doi: 10.1107/S0108767307002723
18. Wei Q. P., Ma L., Ye J., Yu Z. M. Growth Mechanism of Icosahedral and Other Five-Fold Symmetric Diamond Crystals. Transactions of Nonferrous Metals Society of China. 2015, vol. 25, no. 5, pp. 1587–1598. doi: 10.1016/S1003-6326(15)63762-1
19. Németh P., McColl K., Garvie L. A. J., Salzmann C. G., Murri M., McMillan P. F. Complex Nanostructures in Diamond. Nature Materials. 2020, vol. 19, pp. 1126–1131. doi: 10.1038/s41563-020-0759-8
20. Krajčí M., Hafner J. Topologically Induced Semiconductivity in Icosahedral Al–Pd–Re and Its Approximants. Phys. Rev. B. 2007, vol. 75, art. no. 024116. doi: 10.1103/PhysRevB.75.024116
21. Takagiwa Y., Kimura K. Metallic–Covalent Bonding Conversion and Thermoelectric Properties of Al-based Icosahedral Quasicrystals and Approximants. Science and Technology of Advanced Materials. 2014, vol. 15, art. no. 044802. doi: 10.1088/1468-6996/15/4/044802
22. Kroemer H. Quasielectric Fields and Band Off-Sets: Teaching Electrons New Tricks. Reviews of Modern Physics. 2001, vol. 73, no. 3, pp. 783–793. doi: 10.1103/RevModPhys.73.783
23. Nagaoka Y., Schneider J., Zhu H., Chen O. Quasicrystalline Materials from Non-Atom Building Blocks. Matter. 2023, vol. 6, pp. 30–58. doi: 10.1016/j.matt.2022.09.027
24. Arsentev M. Yu., Sysoev E. I., Makogon A. I., Balabanov S. V., Sychev M. M., Hammouri M. H., Moshnikov V. A. High-Throughput Screening of 3D-Printed Architected Materials Inspired by Crystal Lattices: Procedure, Challenges, and Mechanical Properties. ACS Omega. 2023, vol. 8, no. 28, pp. 24865–24874. doi: 10.1021/acsomega.3c00874
25. Optics of Aperiodic Structures: Fundamentals and Device Applications; ed. L. Dal Negro. Singapore, Pan Stanford Publishing, 2014, 530 p. doi:10.1201/b15653
26. Vardeny Z., Nahata A., Agrawal A. Optics of photonic quasicrystals. Nature Photonics. 2013, vol. 7, no. 3, pp. 177–187. doi: 10.1038/nphoton.2012.343
27. Man W., Megens M., Steinhardt P. J., Chaikin P. M. Experimental Measurement of the Photonic Properties of Icosahedral Quasicrystals. Nature. 2005, vol. 436, pp. 993–996. doi: 10.1038/nature03977
28. Poddubny A. N., Ivchenko E. L., Photonic Quasicrystalline and Aperiodic Structures. Physica E: Low-dimensional Systems and Nanostructures. 2010, vol. 42, no. 7, pp. 1871–1895. doi: 10.1016/j.physe.2010.02.020
29. McGurn A. R. Introduction to Photonic and Phononic Crystals and Metamaterials. Cham, Springer, 2020, 193 p. doi: 10.1007/978-3-031-02384-2
30. Arjunan A., Baroutaji A., Robinson J. Advances in Acoustic Metamaterials. In: Encyclopedia of Smart Materials; ed. by A. G. Olabi. Elsevier, 2022, pp. 1–10. doi: 10.1016/B978-0-12-815732-9.00091-7
31. Zhang X., Feng Z., Wang Y., Li Z. Y., Cheng B., Zhang D. Z. Negative Refraction and Imaging with Quasicrystals. In: Physics of Negative Refraction and Negative Index Materials; ed. C. M. Krowne, Y. Zhang. Berlin, Heidelberg, Springer, 2007, pp. 167–182. doi: 10.1007/978-3-540-72132-1_7
32. Boriskina S. Quasicrystals: Making Invisible Materials. Nature Photonics. 2015, vol. 9, pp. 422–424. doi: 10.1038/nphoton.2015.107
33. Jeon S. Y., Kwon H., Hur K. Intrinsic photonic wave localization in a three-dimensional icosahedral quasicrystal. Nature Physics. 2017, vol. 13, pp. 363–368. doi: 10.1038/nphys4002
34. Sinelnik A. D., Shishkin I. I., Yu X., Samusev K. B., Belov P. A., Limonov M. F., Ginzburg P., Rybin M. V. Experimental observation of intrinsic light localization in photonic icosahedral quasicrystals. Advanced Optical Materials. 2020, vol. 8, iss. 21, art. no. 2001170. doi: 10.1002/adom.202001170
35. Wang P., Fu Q., Konotop V. V., Kartashov Y. V., Ye F. Observation of localization of light in linear photonic quasicrystals with diverse rotational symmetries. Nature Photonics. 2024, vol. 18, pp. 224–229. doi: 10.1038/s41566-023-01350-6
36. Florescu M., Torquato S., Steinhardt P. J. Complete Band Gaps in Two-Dimensional Photonic Quasicrystals. Phys. Rev. B. 2009, vol. 80, art. no. 155112. doi: 10.1103/PhysRevB.80.155112
37. Widom M., Mihalkovič M. Quasicrystal StrucTure Prediction: A Review. Israel J. of Chemistry. 2024, vol. 64, no. 10–12, art. no. e202300122. doi: 10.1002/ijch.202300122
38. Steurer W. Quasicrystals: What Do We Know? What Do We Want to Know? What Can We Know? Acta Crystallographica Section A: Foundations and Advances. 2018, vol. 74, pp. 1–11. doi: 10.1107/S2053273317016540
39. Steurer W., Deloudi S. Crystallography of Quasicrystals. Concepts, Methods and Structures. Berlin, Heidelberg, Springer, 2009, 384 p. doi: 10.1007/978-3-642-01899-2
40. Madison A. E. Substitution Rules for Icosahedral Quasicrystals. RSC Advances. 2015, vol. 5, iss. 8, pp. 5745–5753. doi: 10.1039/C4RA09524C
41. Madison A. E. Atomic structure of icosahedral quasicrystals: stacking multiple quasi-unit cells. RSC Advances. 2015, vol. 5, iss. 97, pp. 79279–79297. doi: 10.1039/C5RA13874D
42. Madison A. E., Madison P. A., Moshnikov V. A. The Concept of Unit Cells in the Theory of Quasicrystals. Tech. Phys. 2024, vol. 69, no. 4, pp. 528–541.
43. Madison A. E., Madison P. A. Theory of the Structure of Icosahedral Quasicrystals: General Principles. Zhurnal Tekhnicheskoy Fiziki [Tech. Phys.]. 2024, vol. 69, no. 12, pp. 2123–2134. (In Russ.)
44. Madison A. E., Madison P. A. Theory of the Structure of Icosahedral Quasicrystals: Types of Packings. Zhurnal Tekhnicheskoy Fiziki [Tech. Phys.]. 2025, vol. 70, no. 1, pp. 56–78. (In Russ.)
45. Levitov L. S., Rhyner J. Crystallography of Quasicrystals; Application to Icosahedral Symmetry. J. Phys. France. 1988, vol. 49, pp. 1835–1849. doi: 10.1051/jphys:0198800490110183500
46. Socolar J. E. S., Steinhardt P. J. Quasicrystals. II. Unit-Cell Configurations. Phys. Rev. B. 1986, vol. 34, no. 2, pp. 617–647. doi: 10.1103/PhysRevB.34.617
47. Danzer L. Three-dimensional analogs of the planar Penrose tilings and quasicrystals. Discrete Mathematics. 1989, vol. 76, no. 1, pp. 1–7. doi: 10.1016/0012-365X(89)90282-3
48. He R., Ai M. Z., Cui J. M., Huang Y. F., Han Y. J., Li C. F., Tu T., Creffield C. E., Sierra G., Guo G. C. Identifying the Riemann Zeros by Periodically Driving a Single Qubit. Phys. Rev. A. 2020, vol. 101, no. 4, art. no. 043402. doi: 10.1103/PhysRevA.101.043402
49. Madison A. E., Kozodaev D. A., Kazankov A. N., Madison P. A., Moshnikov V. A. Aperiodic Diffraction Grating Based on the Relationship between Primes and Zeros of the Riemann Zeta Function. Tech. Phys. 2024, vol. 69, no. 4, pp. 620–624.
50. Ferraris G., Makovicky E., Merlino S. Crystallography of Modular Materials. Oxford, Oxford University Press, 2008, 372 p. doi: 10.1093/acprof:oso/9780199545698.001.0001
51. Bulienkov N. A., Tytik D. L. Modular Design of Icosahedral Metal Clusters. Russ. Chem. Bull. 2001, vol. 50, no. 1, pp. 1–19. doi: 0.1023/A:1009524314066
52. Engel M., Damasceno P. F., Phillips C. L., Glotzer S. C. Computational Self-Assembly of a One-Component Icosahedral Quasicrystal. Nature Materials. 2015, vol. 14, pp. 109–116. doi: 10.1038/nmat4152
53. Chandler L., Barker O. J., Wright A. J., O'Brien L., Coates S., McGrath R., Lifshitz R., Sharma H. R. Fabricating Quasiperiodic Tilings with Thermal-Scanning Probe Lithography. Israel J. of Chemistry. 2024, vol. 64, no. 10–11, art. no. e202300115. doi: 10.1002/ijch.202300115
Review
For citations:
Madison A.E., Madison P.A., Moshnikov V.A., Solomonov A.V. Modular Design of Interfaces in Nanostructures from Quasicrystalline Blocks. Journal of the Russian Universities. Radioelectronics. 2025;28(2):80-93. (In Russ.) https://doi.org/10.32603/1993-8985-2025-28-2-80-93