Investigation of a Tunable Microwave Photonic Filter Based on an Acetylene Reference Cell
https://doi.org/10.32603/1993-8985-2023-26-1-68-77
Abstract
Introduction. Recently, the development of tunable microwave photonic filters has attracted great scientific and practical interest. Such microwave photonic filters are a good alternative to traditional electrical solutions, due to low losses, wide operating frequency range and such filters can be easily integrated into various telecommunication systems. By using an acetylene reference cell and a laser with tunable wavelength can make it possible to create tunable microwave photonic filter with wide operating frequency range.
Aim. Investigation of the characteristic of a tunable microwave photonic filter based on an acetylene reference cell, as well as research possible solution to reduce losses in filter bandwidth; numerical simulation of microwave photonic filter characteristics.
Materials and methods. Experimental study was carried out on an experimental prototype of a tunable microwave photonic filter. The filter consisted of a laser with a tunable wavelength, a phase modulator, an acetylene reference cell, an optical fiber connecting the gas cell with a photodetector, and a photodetector. Theoretical study was carried out by modeling of the transmission characteristics of the microwave photonic filter.
Results. Experimental transmission characteristics of a tunable microwave photonic filter were obtained. The tuning of the filter bandwidth by tuning laser wavelength was studied. Modeling of transmission characteristics of microwave photonic filter was performed. Possible solution to reduce losses in filter bandwidth was proposed.
Conclusion. A tunable microwave photonic filter based on an acetylene reference cell is proposed. Losses in the filter bandwidth was about −30 dB. Using high-power laser and a photodetector with a high photocurrent can reduce losses in the filter bandwidth.
About the Authors
I. Yu. TatsenkoRussian Federation
Ivan Yu. Tatsenko, Postgraduate Student at the Department of Physical Electronics and Technologies
5 F, Professor Popov St., St Petersburg 197022
A. V. Shamrai
Russian Federation
Aleksandr V. Shamrai, Dr Sci. (Phys.-Math.) (2010), Chief Researcher, Head of the Laboratory of Quantum Electronics
26, Politekhnicheskaya St., St Petersburg 194021
S. I. Stepanov
Mexico
Sergey I. Stepanov, Dr Sci. (Phys.-Math.) (1988), Docent (2013), Member of Optical Society of America, Laureate of the USSR State Prize (1985), Chief Researcher
Tijuana No. 3918, Zona Playitas, Ensenada 22860
A. B. Ustinov
Russian Federation
Alexey B. Ustinov, Dr Sci. (Phys.-Math.) (2012), Docent (2010), Associate Professor at the Department of Physical Electronics and Technologies
5 F, Professor Popov St., St Petersburg 197022
References
1. Seeds A. J., Williams K. J. Microwave Photonics. J. of Lightwave Technology. 2006, vol. 24, no. 12, pp. 4628–4641. doi: 10.1109/JLT.2006.885787
2. Capmany J., Novak D. Microwave Photonics Combines Two Worlds. Nature Photonics. 2007, vol. 1, no. 6, pp. 319–330. doi: 10.1038/nphoton.2007.89
3. Yao J. Microwave Photonics. J. of Lightwave Technology. 2009, vol. 27, no. 3, pp. 314–335. doi: 10.1109/JLT.2008.2009551
4. Yao J. Photonics to the Rescue: A Fresh Look at Microwave Photonic Filters. IEEE Microwave Magazine. 2015, vol. 16, no. 8, pp. 46–60. doi: 10.1109/MMM.2015.2441594
5. Ghelfi P., Laghezza F., Scotti F., Serafino G., Capria A., Pinna S., Onori D., Porzi C., Scaffardi M., Malacarne A., Vercesi V., Lazzeri E., Berrizzi F., Bogoni A. A Fully Photonics-Based Coherent Radar System. Nature. 2014, vol. 507, no. 7492, pp. 341–345. doi: 10.1038/nature13078
6. Muniz A. L. M., Noque D. F., Borges R. M., Bogoni A., Hirano M., A. Cerqueira S. Jr. All‐Optical RF Amplification Toward Gpbs Communications and Millimeter‐Waves Applications. Microwave and Optical Technology Let. 2017, vol. 59, no. 9, pp. 2185–2189. doi: 10.1002/mop.30704
7. Noque D. F., Borges R. M., Muniz A. L. M., Bogoni A., A. Cerqueira S. Jr. Thermal and Dynamic Range Characterization of a Photonics-Based RF Amplifier. Optics Communications. 2018, vol. 414, pp. 191–194. doi: 10.1016/j.optcom.2018.01.015
8. Yao X. S., Maleki L. Optoelectronic Microwave Oscillator. J. of the Optical Society of America B. 1996, vol. 13, no. 8, pp. 1725–1735. doi: 10.1364/JOSAB.13.001725
9. Ustinov A. B., Kondrashov A. V., Nikitin A. A., Lebedev V. V., Petrov A. N., Shamrai A. V., Kalinikos B. A. A Tunable Spin Wave Photonic Generator with Improved Phase Noise Characteristics. J. of Physics: Conf. Ser. 2019, vol. 1326, no. 1, p. 012015. doi: 10.1088/1742-6596/1326/1/012015
10. Li W., Yao J. Dynamic Range Improvement of a Microwave Photonic Link Based on Bi-Directional Use of a Polarization Modulator in a Sagnac Loop. Optics Express. 2013, vol. 21, no. 13, pp. 15692–15697. doi: 10.1364/OE.21.015692
11. Ackerman E., Betts G., Burns W., Campbell J., Сох С., Duan N., Prince J., Regan М., Roussell М. H. Signal-to-Noise Performance of Two Analog Photonic Links Using Different Noise Reduction Techniques. IEEE МТТ-S Int. Microwave Symp. Piscataway, IEEE, 2007, pp. 51–54. doi: 10.1109/MWSYM.2007.380216
12. Tatsenko I. Yu., Legkova Т. К., Ivanov А. V., Ustinov А. B. Investigation of the Characteristics of a Photodetector with a High Photocurrent when Transmitting Microwave Radio Signals Through an Optical Fiber. J. of the Russian Universities. Radioelectronics. 2020, vol. 23, no. 4, pp. 48–56. doi: 10.32603/1993-89852020-23-4-48-56 (In Russ.)
13. Capmany J., Mora J., Gasulla I., Sancho J., Lloret J., Sales S. Microwave Photonic Signal Processing. J. of Lightwave Technology. 2012, vol. 31, no. 4, pp. 571– 586. doi: 10.1109/JLT.2012.2222348
14. Marpaung D., Yao J., Capmany J. Integrated Microwave Photonics. Nature Photonics. 2019, vol. 13, no. 2, pp. 80–90. doi: 10.1038/s41566-018-0310-5
15. Yi X., Huang T. X. H., Minasian R. A. Tunable and Reconfigurable Photonic Signal Processor with Programmable All-Optical Complex Coefficients. IEEE Transactions on Microwave Theory and Techniques. 2010, vol. 58, no. 11. pp. 3088–3093. doi: 10.1109/TMTT.2010.2076931
16. Xue W., Sales S., Mork J., Capmany J. Widely Tunable Microwave Photonic Notch Filter Based on Slow and Fast Light Effects. IEEE Photonics Technology Let. 2009, vol. 21, no. 3, pp. 167–169. doi: 10.1109/LPT.2008.2009468
17. Yan Y., Yao J. P. A Tunable Photonic Microwave Filter with a Complex Coefficient Using an Optical RF Phase Shifter. IEEE Photonics Technology Let. 2007, vol. 19, no. 19, pp. 1472–1474. doi: 10.1109/LPT.2007.903753
18. Zeng F., Wang J., Yao J. P. All-Optical Microwave Bandpass Filter with Negative Coefficients Based on a Phase Modulator and Linearly Chirped Fiber Bragg Gratings. Optics Let. 2005, vol. 30, no. 17, pp. 2203– 2205. doi: 10.1364/OL.30.002203
19. Wang J., Zeng F., Yao J. P. All-Optical Microwave Bandpass Filter with Negative Coefficients Based on PM-IM Conversion. IEEE Photonics Technology Let. 2005, vol. 17, no. 10, pp. 2176–2178. doi: 10.1109/LPT.2005.852323
20. Mora J., Capmany J., Loayssa A., Pastor D. Novel Technique for Implementing Incoherent Microwave Photonic Filters with Negative Coefficients Using Phase Modulation and Single Sideband Selection. IEEE Photonics Technology Let. 2006, vol. 18, no. 18, pp. 1943–1945. doi: 10.1109/LPT.2006.879950
21. Yao J. P., Wang Q. Photonic Microwave Bandpass Filter with Negative Coefficients Using a Polarization Modulator. IEEE Photonics Technology Let. 2007, vol. 19, no. 9, pp. 644–646. doi: 10.1109/LPT.2007.894942
22. Li W., Li M., Yao J. A Narrow-Passband and Frequency-Tunable Microwave Photonic Filter Based on Phase-Modulation to Intensity-Modulation Conversion Using a Phase-Shifted Fiber Bragg Grating. IEEE Transactions on Microwave Theory and Techniques. 2012, vol. 60, no. 5, pp. 1287–1296. doi: 10.1109/TMTT.2012.2187678
23. Gao L., Zhang J., Chen X., Yao J. Microwave Photonic Filter with Two Independently Tunable Passbands Using a Phase Modulator and an Equivalent Phase-Shifted Fiber Bragg Grating. IEEE Transactions on Microwave Theory and Techniques. 2014, vol. 62, no. 2, pp. 380–387. doi: 10.1109/TMTT.2013.2294601
24. Han X., Yao J. Bandstop-to-Bandpass Microwave Photonic Filter Using a Phase-Shifted Fiber Bragg Grating. J. of Lightwave Technology. 2015, vol. 33, no. 24, pp. 5133–5139. doi: 10.1109/JLT.2015.2492818
25. Zhang W., Minasian R. A. Widely Tunable Single-Passband Microwave Photonic Filter Based on Stimulated Brillouin Scattering. IEEE Photonics Technology Let. 2011, vol. 23, no. 23, pp. 1775–1777. doi: 10.1109/LPT.2011.2169242
26. Marpaung D., Morrison B., Pagani M., Pant R., Choi D. Y., Luther-Davies B., Madden S. J, Eggleton B. J. Low-Power, Chip-Based Stimulated Brillouin Scattering Microwave Photonic Filter with Ultrahigh Selectivity. Optica. 2015, vol. 2, no. 2, pp. 76–83. doi: 10.1364/OPTICA.2.000076
27. Byrnes A., Pant R., Li. E. Choi D. Y., Poulton C. G., Fan S., Madden S., Luther-Davies B., Eggleton B. J. Photonic Chip Based Tunable and Reconfigurable Narrowband Microwave Photonic Filter Using Stimulated Brillouin Scattering. Optics Express. 2012, vol. 20, no. 17, pp. 18836–18845. doi: 10.1364/OE.20.018836
28. Palací J., Villanueva G. E., Galán J. V., Marti J., Vidal B. Single Bandpass Photonic Microwave Filter Based on a Notch Ring Resonator. IEEE Photonics Technology Let. 2010, vol. 22, no. 17, pp. 1276–1278. doi: 10.1109/LPT.2010.2053527
29. Zeng F., Yao J. Frequency Domain Analysis of Fiber Bragg Grating Based Phase Modulation to Intensity Modulation Conversion. Photonic Applications in Nonlinear Optics, Nanophotonics, and Microwave Photonics. 2005, vol. 5971, pp. 594–601. doi: 10.1117/12.628628
30. Qi G., Yao J., Seregelyi J., Paquet S., Bélisle C. Optical Generation and Distribution of Continuously Tunable Millimeter-Wave Signals Using an Optical Phase Modulator. J. of Lightwave technology. 2005, vol. 23, no. 9, p. 2687.
31. Nikitin A. A., Kondrashov A. V., Vitko V. V., Ryabcev I. A., Zaretskaya G. A., Cheplagin N. A., Konkin D. A., Kokolov A. A., Babak. L. I., Ustinov A. B., Kalinikos B. A. Carrier-Induced Optical Bistability in the Silicon Micro-Ring Resonators Under Continuous Wave Pumping. Optics Communications. 2021, vol. 480, p. 126456. doi: 10.1016/j.optcom.2020.126456
32. Nikitin A. A., Ryabcev I. A., Nikitin A. A., Kondrashov A. V., Semenov A. A., Konkin D. A., Kokolov A. A., Sheyerman F. I., Babak L. I., Ustinov A. B. Optical Bistable SOI Micro-Ring Resonators For Memory Applications. Optics Communications. 2022, vol. 511, p. 127929. doi 10.1016/j.optcom.2022.127929
33. Diaz J., Stepanov S. , Casillas N., Ocegueda M., Hernandez E., Lebedev V., Agruzov P., Shamrai A. SelfReference Shot-Noise-Limited Phase Demodulator with 1530 nm Acetylene Absorption Line. Results in Optics. 2022, vol. 9, p. 100316. doi: 10.1016/j.rio.2022.100316
Review
For citations:
Tatsenko I.Yu., Shamrai A.V., Stepanov S.I., Ustinov A.B. Investigation of a Tunable Microwave Photonic Filter Based on an Acetylene Reference Cell. Journal of the Russian Universities. Radioelectronics. 2023;26(1):68-77. (In Russ.) https://doi.org/10.32603/1993-8985-2023-26-1-68-77