Preview

Journal of the Russian Universities. Radioelectronics

Advanced search

Automatic method of colposcopic multi-spectral images analysis for television systems diagnostics of cervical cancer

Abstract

Automated method of fluorescence images analysis obtained by excitation radiation with a wavelength of 360 and 390 nm is proposed. The method allows to detect the status of tissues of cervix: normal, chronic nonspecific inflammation (CNI) and cervical intraepithelial neoplasia (CIN), and build differential map pathology. For the border CIN/CNI achieved a sensitivity of 87 % and specificity 71 %. The method includes a specific preprocessing of the original images: combining images taken in different lighting conditions and highlight the area of interest. Features of the method are the use of a combination of features calculated for images of different types, and decision rule for classification based data mining techniques.

About the Authors

N. A. Obukhova
Saint Petersburg Electrotechnical University "LETI"
Russian Federation


A. A. Motyko
Saint Petersburg Electrotechnical University "LETI"
Russian Federation


References

1. Cancer Facts & Figures 2006 // URL: http://www. can-cer.org/cancer/cervicalcancer/detailedguide/cervical-cancer-key-statistics (дата посещения 10.12.2015).

2. Cervical cancer incidence and survival in Korea: 1993-2002 / H. H. Chung, M. J. Jang, K. W. Jung et al. // Int. J. of Gynecological Cancer. 2006. Vol. 16, № 5, Р. 1833-1838.

3. Automated image analysis of digital colposcopy for the detection of cervical neoplasia / S. Y. Park, M. Follen, A. Milbourne et al. // J. of Bio-medical Optics. 2008. Vol. 13, iss. 1. P. (014029-1)-( 014029-10).

4. Colposcopy for the diagnosis of squamous intraepithelial lesions: a meta-analysis / M. F. Mitchell, D. Schottenfeld, G. Tortolero-Luna et al. // Obstet. Gynecol. 1998. Vol. 91. P. 626-631.

5. Srinvasan Y., Hernes D., Tulpue B. A Probabilistic Approach to Segmentation and Classification of Neoplasia in Uterine Cervix Images Using Color and Geometric Features // SPIE Proc. 2009. Vol. 7259: Medical Imaging 2009: Image Processing // http://spie.org/Publications /Proceedings/Paper/10.1117/12.811210# (дата посещения 10.12.2015).

6. Xiong J. L.б Wang J. Gu. Image Segmentation of the Acetowhite region in Cervix Images Based on Chromaticity // Proc. of 9 Int. Conf. on In-formation Technology an Applications in Biomedicine (ITAB 2009). Larnaca, Cyprus, 5-7 Nov. 2009. Piscataway: IEEE, 2009. P. 140-144.

7. Huang X., Wang W., Xue Z. Tissue Classification using Cluster Features for Lesion Detection in Digital Cervigrams // SPIE Proc. 2008. Vol. 6914. Medical Imaging 2008: Image Processing // http://spie.org/Publica-tions /Proceedings/Paper/10.1117/12.771088 (дата посещения 10.12.2015).

8. Alush A., Greenspan H., Goldberger J. Auto-mated and Interactive Lesion Detection an Segmentation in Uterine Cervix Images // IEEE Trans. on Medical Imaging. 2010. Vol. MI-29, № 2. P. 488-501.

9. Alush A., Greenspan H., Goldberger J. Lesion Detection and Segmentation in uterine cervix images using an arc-level MRF // Proc. of Int. Conf. on Information Technology and Applications in Biomedicine (ISBI 2009). Boston, MA, USA, June 28 - July 1, 2009. P. 474-477 // http://www.sciweavers.org/read/lesion-detection-and-seg mentation-in-uterine-cervix-images-using-an-arc-level-mrf-61381 (дата посещения 10.12.2015).

10. Content Analysis of Uterine Cervix Images: Initial Steps Towards Content Based Indexing and Retrieval of Cervigrams // S. Gordon, G. Zimmer-man, R. Long et al. // SPIE Proc. 2006. Vol. 6144. Medical Imaging 2006: Image Processing. P. 1549-1556.

11. Automated image analysis of digital colposcopy for the detection of cervical neoplasia / S. Park, M. Follen, A. Milbourne et al. // J. Biomed Opt. 2008. Vol. 13, № 1. P. 14-29.

12. Multispectral digital colposcopy for in vivo detection of cervical cancer / J. M. Benavides, S. Chang, S. Y. Park et al. // Optics express. 2003. Vol. 11, № 10. P. 1223-1236.

13. Multispectral digital microscopy for in vivo detection of oral neoplasia in the hamster cheek pouch model of carcinogenesis / S. Y. Park, K. Sokolov, T. Collier et al. // Optics Express. 2005. Vol. 13. P. 749-762.

14. Van Raad V., Bradley A. B. Emerging Technologies, Signal proceeding and statistical methods for screening of cervical cancer in vivo - are they good candidates for cervical screening? // Proc. of IEEE 2nd Int. Conf. on Advances in Medical Signal and Information Processing (MEDSIP'04), Malta, 5-8 Sept., 2004. P. 210-217 // http://espace.lib-rary.uq.edu.au/view/UQ:8932/MEDSIP04 _VVR_APB.pdf (дата посещения 10.12.2015).

15. Ji Q., Engel J., Craine E. Texture Analysis for classification of Cervix Lesions // IEEE Trans. on Medical Imaging. 2010. Vol. 19, № 11. P. 1144-1149.

16. Ji Q., Engel J., Craine E. Classifying cervix tissue patterns with texture analysis // Pattern Recognition. 2000. Vol. 33, № 9. P. 1561-1573.

17. Segmentation and Classification of Cervix Lesions by Pattern and Texture Analysis / Bh. Tul-pule , Sh. Yang, Y. Srinivasan et al. // Proc. of IEEE Int. Conf. on Fuzzy System. 22-25 May 2005. Reno, NV, USA. Piscataway: IEEE, 2005. P. 173-176.

18. Tulpule B. Color and Texture Analysis of Cervix Lesions: MS in Electrical Engineering Degree Thesis // Texas Tech. University. Lubbock, TX, USA. 2004, 56 p. // https://www.google.ru/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahUKEwjvndncyaLKAhVH_3IKHTqsAQ4QFggfMAA&url=https%3A%2F%2Frepositories.tdl.org%2Fttuir%2Fbitstream%2Fhandle%2F2346%2F13541%2F31295019800795.pdf%3Fsequence%3D1&usg=AFQjCNFYL9wqDUi-_ovmDIWOMfaf0B9znA&cad=rjt (дата посещения 10.12.2015).

19. Li Wenjing, Poirson A. Detection and Characterization of Abnormal Vascular Patterns in Automated Cervical Image Analysis // URL: http://www.sti-hawaii.com/docs /ISVC2006 /ISVC06_225_CameraReady.pdf (дата посещения 10.12.2015).

20. Classification of Cervix Lesions Using Filter Bank-Based Texture Models / Y. Srinivasan, B. Nutter, S. Mitra et al. // Proc. of the 19th IEEE Symp. Computer-Based Medical Systems (CBMS’06). 22-23 June 2006, Salt Lake City, UT, USA. Piscataway: IEEE, 2006. P. 832-840.

21. Gordon S., Zimmerman G., Greenspan H. Image segmentation of Uterine Cervix images for indexing in PACS // Proc. of the 17th IEEE Symp. on Computer-Based Medical Systems (CBMS’04). 24-25 June 2004, Tel Aviv, Israel. Piscataway: IEEE, 2004. P. 298-303.

22. Комплекс для флуоресцентной диагностики и фотодинамической терапии заболеваний шейки матки / Н. А. Обухова, Г. В. Папаян, А. А. Мотыко и др. // Опт. журнал. 2015. Т. 82, № 12. С. 47-59.

23. Stone H. S. A Fast Direct Fourier-Based Algorithm for Subpixel Registration of Images // IEEE Trans. on Geoscience and Remote Sensing. 2001. Vol. GRS-39, № 10. P. 2235-2242.

24. Das A., Kar A., Bhattacharyya D. Elimination of Specular reflection and Identification of ROI: The First Step in Automated Detection of Uterine Cervical Cancer using Digital Colposcopy // IEEE Int. Conf. on Imaging Systems & Techniques (IST’11). 17 May 2011, Penang, Malaysia. Piscataway: IEEE, 2011. P. 237-141.

25. Breiman L. Random Forests // J. Machine Learning. 2001. Vol. 45, iss. 1. P. 5-32.

26. Meinshausen N. Quantile Regression Forest // J. Machine Learning Research. 2006. Vol. 7, iss. 6. P. 983-999.

27. Han J., Kamber M. Data mining: concepts and techniques. 2nd. ed. San Francisco: Morgan Kaufmann, Elsevier Science, 2006. 137 p


Review

For citations:


Obukhova N.A., Motyko A.A. Automatic method of colposcopic multi-spectral images analysis for television systems diagnostics of cervical cancer. Journal of the Russian Universities. Radioelectronics. 2015;(6):24-33. (In Russ.)

Views: 480


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1993-8985 (Print)
ISSN 2658-4794 (Online)