Preview

Journal of the Russian Universities. Radioelectronics

Advanced search

Mutual Synchronization of Antiferromagnetic Spintronic Oscillators

https://doi.org/10.32603/1993-8985-2022-25-5-80-90

Abstract

Introduction. Recent studies into the properties of spintronic oscillators have led to broadening their scope of practical application as devices for generating and processing signals. The practical implementation of spintronic oscillators is, however, significantly limited by their low power capacity, thus requiring synchronization between devices.

Aim. Determination of conditions for the implementation of the synchronous regime of two antiferromagnetic spintronic oscillators coupled by a common current.

Materials and methods. To simplify the numerical simulation of a system of coupled resistively antiferromagnetic oscillators, the method of multiple-time-scale analysis was used. This allowed a system of Kuramoto equations to be considered instead of the original system. To determine the locking band of the Kuramoto model, the homoclinic trajectory approximation method was applied.

Results. A system of Kuramoto equation for the phases of partial oscillators under the influence of the inertial term and phase shift was obtained. Expressions describing the locking and synchronization band as functions of the system parameters (bias currents and sizes) were derived. The numerically simulated Kuramoto model was used to determine the bands of the synchronous and asynchronous regimes.

Conclusion. The results of numerical simulations of the system of Kuramoto equations and the Adler equation for two coupled spintronic oscillators agree well with the theoretically calculated values of locking and synchronization ranges. The scheme for reducing the model of antiferromagnetic oscillators to a Kuramoto model can be further extended to the case of a larger number of coupled oscillators, which will simplify computational experiments and significantly reduce the time required for numerical simulations.

About the Authors

A. Yu. Mitrofanova
Kotel’nikov Institute of Radioengineering and Electronics, RAS; Moscow Institute of Physics and Technology
Russian Federation

Anastasia Yu. Mitrofanova, Engineer; student of the 1st year of Master degree of the Department of Solid-state electronics, radiophysics and applied information technologies

11, Mokhovaya St., build. 7, Moscow 125009



A. R. Safin
Kotel’nikov Institute of Radioengineering and Electronics, RAS; National Research University "MPEI"
Russian Federation

Ansar R. Safin, senior researcher; Cand. Sci. (Eng.) in the specialty "Radio engineering including television systems and devices" (2014), Head of the Department of Radio Signal Generation and Processing

11, Mokhovaya St., build. 7, Moscow 125009



O. V. Kravchenko
Kotel’nikov Institute of Radioengineering and Electronics, RAS; Institution of Russian Academy of Sciences Dorodnicyn Computing Centre of RAS
Russian Federation

Oleg V. Kravchenko, Engineer; researcher of the Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences

11, Mokhovaya St., build. 7, Moscow 125009



S. A. Nikitov
Kotel’nikov Institute of Radioengineering and Electronics, RAS; Moscow Institute of Physics and Technology
Russian Federation

Sergey A. Nikitov, Academician of the Russian Academy of Sciences (2022), Director; Doctor of Physical and Mathematical Sciences (1991), Professor (1995)

11, Mokhovaya St., build. 7, Moscow 125009



References

1. Oliveira H. M., Melo L. V. Huygens Synchronization of Two Clocks. Sci. Rep. 2015, vol. 5, iss. 1, pp. 1–12. doi: 10.1038/srep11548

2. Ramirez J. P., Olvera L. A., Nijmeijer H., Alvarez J. The Sympathy of Two Pendulum Clocks: Beyond Huygens' Observations. Sci. Rep. 2016, vol. 6, iss. 1, pp. 1–16. doi: 10.1038/srep23580

3. Glass L. Synchronization and Rhythmic Processes in Physiology. Nature. 2001, vol. 410, iss. 6825, pp. 277–284. doi: 10.1038/35065745

4. Liu C., Weaver D. R., Strogatz S. H., Reppert S. M. Cellular Construction of a Circadian Clock: Period Determination in the Suprachiasmatic Nuclei. Cell. 1997, vol. 91, iss. 6, pp. 855–860. doi: 10.1016/S0092-8674(00)80473-0

5. Buck J. Synchronous Rhythmic Flashing Of Fireflies. II. The Quarterly Review of Biology. 1988, vol. 63, iss. 3, pp. 265–289. doi: 10.1086/415929

6. Changchao L., Zhongjian K. Research on the Frequency Synchronization Control Strategy for Power System. Intern. J. of Electrical Power & Energy Systems. 2022, vol. 134, p. 107407. doi: 10.1016/ j.ijepes.2021.107407

7. Kurenkov A., Fukami S., Ohno H. Neuromorphic Computing with Antiferromagnetic Spintronics. J. Appl. Phys. 2020, vol. 128, iss. 1, p. 010902. doi: 10.1063/5.0009482

8. Grollier J., Querlioz D., Camsari K. Y., Everschor-Sitte K., Fukami S., Stiles M. D. Two-Dimensional Mutually Synchronized Spin Hall Nano-Oscillator Arrays for Neuromorphic Computing. Nat. electronics. 2020, vol. 3, iss. 7, pp. 360–370. doi: 10.1038/s41928-019-0360-9

9. Tsunegi S., Taniguchi T., Lebrun R., Yakushiji K., Cros V., Grollier J., Fukushima A., Yuasa S., Kubota H. Scaling Up Electrically Synchronized Spin Torque Oscillator Networks. Sci. Rep. 2018, vol. 8, iss. 1, pp. 1–7. doi: 10.1038/s41598-018-31769-9

10. Dieny B., Prejbeanu I. L., Garello K., et al. Opportunities and Challenges for Spintronics in the Microelectronics Industry. Nat. Electronics. 2020, vol. 3, iss. 8, pp. 446–459. doi: 10.1038/s41928-020-0461-5

11. Hoppensteadt F. C., Izhikevich E. M. Pattern Recognition via Synchronization in Phase-Locked Loop Neural Networks. IEEE Transactions on Neural Networks. 2000, vol. 11, iss. 3, pp. 734–738. doi: 10.1109/72.846744

12. Hoppensteadt F. C., Izhikevich E. M. Oscillatory Neurocomputers with Dynamic Connectivity. Phys. Rev. Lett. 1999, vol. 82, iss. 14, p. 2983. doi: 10.1103/PhysRevLett.82.2983

13. Csaba G., Porod W. Coupled Oscillators for Computing: A Review and Perspective. Appl. Phys. Rev. 2020, vol. 7, iss. 1, p. 011302. doi: 10.1063/1.5120412

14. Zahedinejad M., Awad A. A., Muralidhar S., Khymyn R., Fulara H., Mazraati H., Dvornik M., Åkerman J. Two-Dimensional Mutually Synchronized Spin Hall Nano-Oscillator Arrays for Neuromorphic Computing. Nat. Nanotechnology. 2020, vol. 15, iss. 1, pp. 47–52. doi: 10.1038/s41565-019-0593-9

15. Gomonay O., Baltz V., Brataas A., Tserkovnyak Y. Antiferromagnetic Spin Textures and Dynamics. Nat. Phys. 2018, vol. 14, iss. 3, pp. 213–216. doi: 10.1038/s41567-018-0049-4

16. Cheng R., Xiao D., Brataas A. Terahertz Antiferromagnetic Spin Hall Nano-Oscillator. Phys. Rev. Lett. 2016, vol. 116, iss. 20, p. 207603. doi: 10.1103/PhysRevLett.116.207603

17. Safin A., Puliafito V., Carpentieri M., Finocchio G., Nikitov S., Stremoukhov P., Kirilyuk A., Tyberkevych V., Slavin A. Electrically Tunable Detector of THz-Frequency Signals Based on an Antiferromagnet. Appl. Phys. Lett. 2020, vol. 117, iss. 22, p. 222411. doi: 10.1063/5.0031053

18. Sulymenko O., Prokopenko O., Lisenkov I., Åkerman J., Tyberkevych V., Slavin A. N., Khymyn R. Ultra-Fast Logic Devices Using Artificial "Neurons" Based on Antiferromagnetic Pulse Generators. J. Appl. Phys. 2018, vol. 124, iss. 15, p. 152115. doi: 10.1063/1.5042348

19. Acebrón J. A., Bonilla L. L., Pérez Vicente C. J., Ritort F., Spigler R. The Kuramoto Model: A Simple Paradigm for Synchronization Phenomena. Reviews of Modern Physics. 2005, vol. 77, iss. 1, p. 137. doi: 10.1103/RevModPhys.77.137

20. Trees B. R., Saranathan V., Stroud D. Synchronization in Disordered Josephson Junction Arrays: Small-World Connections and the Kuramoto Model. Phys. Rev. E. 2005, vol. 71, iss. 1, p. 016215. doi: 10.1103/PhysRevE.71.016215

21. Garg N., Bhotla S. V. H., Muduli P. K., Bhowmik D. Kuramoto-Model-Based Data Classification Using the Synchronization Dynamics of Uniform-Mode Spin Hall Nano-Oscillators. Neuromorphic Computing and Engineering. 2021, vol. 1, iss. 2, p. 024005. doi: 10.1088/2634-4386/ac3258

22. Arenasab A., Díaz-Guileracb A., Kurthsde J., Morenobf Y., Zhou C. Synchronization in Complex Networks. Phys. Rep. 2008, vol. 469, iss. 3, pp. 93–153. doi: 10.1016/j.physrep.2008.09.002

23. Marvel S. A., Mirollo R. E., Strogatz S. H. Identical Phase Oscillators with Global Sinusoidal Coupling Evolve by Möbius Group Action. Chaos. 2009, vol. 19, iss. 4, p. 043104. doi: 10.1063/1.3247089

24. Pikovsky A., Rosenblum M. Partially Integrable Dynamics of Hierarchical Populations of Coupled Oscillators. Physical Review Letters. 2008, vol. 101, iss. 26, p. 264103. doi: 10.1103/PhysRevLett.101.264103

25. Khymyn R., Lisenkov I., Tiberkevich V., Ivanov B. A., Slavin A. Antiferromagnetic THz-Frequency Josephson-Like Oscillator Driven by Spin Current. Sci. Rep. 2017, vol. 7, iss. 1, pp. 1–10. doi: 10.1038/srep43705

26. Khymyn R., Lisenkov I., Voorheis J., Sulymenko O., Prokopenko O., Tiberkevich V., Akerman J., Slavin A. Ultra-Fast Artificial Neuron: Generation of Picosecond-Duration Spikes in a Current-Driven Antiferromagnetic Auto-Oscillator. Sci. Rep. 2018, vol. 8, iss. 1, pp. 1–9. doi: 10.1038/s41598-018-33697-0

27. Naife A. Metody vozmushchenii [Perturbation Methods]. Moscow, Mir, 1976, 456 p. (In Russ.)

28. Kapranov M. V. Teoriya kolebanii v radiotekhnike [Theory of Oscillations in Radio Engineering]. Moscow, Nauka, 1984, 320 p. (In Russ.)

29.


Review

For citations:


Mitrofanova A.Yu., Safin A.R., Kravchenko O.V., Nikitov S.A. Mutual Synchronization of Antiferromagnetic Spintronic Oscillators. Journal of the Russian Universities. Radioelectronics. 2022;25(5):80-90. (In Russ.) https://doi.org/10.32603/1993-8985-2022-25-5-80-90

Views: 384


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1993-8985 (Print)
ISSN 2658-4794 (Online)