INITIAL DEFORMATION OF SINX/AL CANTILEVERS ACCORDING TO THERMAL BUDGET FOR MEMS SENSORS
https://doi.org/10.32603/1993-8985-2018-21-4-47-56
Abstract
Mechanical properties of MEMS devices are specified by their structure and process parameters, such as temperature, films thickness, deposition conditions, etc. These features, in particular, the deposition temperature and post deposition treatments, determine the residual stress in the films, which affect the initial deformation, stability of parameters, sensitivity and reliability. Prediction, control and minimization of residual stress are an important part of the structural and technological design of MEMS devices. The effect of post deposition thermal treatment on the residual mechanical stress of SiNx, Al and SiNx/Al films is studied. It is shown that the tensile stress in Al film is critical for residual mechanical stress of the SiNx/Al structure and increases with the increase of temperature and time of post annealing. This allows to control the post annealing conditions and the process temperature budget to compensate the compressive stress in SiNx films and to minimize the summary residual stresses and initial deformations of SiNx/Al structure. The residual stress of the bilayer SiNx/Al structure has little effect on the film thickness, but the ratio of SiNx and Al thicknesses is significant for the thermal deformation of SiNx/Al microcantilever.
About the Authors
G. A. RudakovRussian Federation
Grigory A. Rudakov – Master’s Degree in Electronics and Microelectronics (2003), head of sector of SMC "Technological center". The author of more than 20 scientific publications. Area of expertise: semiconductor and MEMS technologies, thermal image detectors.
1, Shokina Sq., Zelenograd, 124498, Moscow.
R. Z. Khafizov
Russian Federation
Renat Z. Khafizov – Ph.D. in Physical and Mathematical sciences (1077), General Director of LLC "GrafIm-press". The author of more than 100 scientific publications. Area of expertise: physics of semiconductor devices (focal planes arrays of visible and IR ranges, including those based on MEMS technologies, magnet-sensitive sensors, photoelectric energy converters).
6, Streletskaya Str., 127018, Moscow.
References
1. Gaura E., Newman R. Smart MEMS and Sensor Systems. Imperial College Press, 2006, 552 p.
2. Baltes H., Brand O., Fedder G. K., Hierold C., Korvink J. G., Tabata O. Enabling Technology for MEMS and Nanodevices. Advanced Micro & Nanosystems, vol. 1, Betreiber, Wiley-VCH, 2004, 430 p.
3. Hesketh P. J. BioNanoFluidic MEMS. Luxembourg, Springer, 2008, 292 p.
4. Ghodssi R., Lin P. MEMS Materials and Processes. Handbook. Luxembourg, Springer, 2008, 1188 p.
5. Hunter S., Maurer G., Simelgor G., Radhakrishnan S., Gray J. High Sensitivity 25μm and 50μm Pitch Microcantilever IR Imaging Arrays. Proc. of SPIE. 2007, vol. 6542, pp. 1–13.
6. Amelichev V. V., Il'kov A. V. Konstruktivno-tekhnologicheskii bazis sozdaniya elektroakusticheskikh preobrazovatelei. Mir elektroniki [Structural and Technological Basis for Creating Electro-Acoustic Transducers. The World of Electronics]. Moscow, Tekhnosfera, 2012, 104 p. (In Russian)
7. Rudakov G. A., Sigarev A. A., Fedirko V. A., Fetisov E. A. Characterization of Nonstoichiometric Silicon Nitride PECVD/ALD Films for IR Micro-Detectors Arrays. 14th Int. Baltic Conference on Atomic Layer Deposition (BALD). 2–4 November 2016. Saint Petersburg. Piscataway: IEEE, 2016, pp. 2011–2013.
8. Fedirko V. A., Fetisov E. A., Khafizov R. Z., Rudakov G. A., Sigarev A. A. Thermopile IR Sensor Arrays. Proc. of the Scientific–Practical Conf. "Research and Development – 2016". 14–15 December 2016. Moscow. Russia. Luxembourg, Springer, 2016, pp. 39–48.
9. Steffanson M., Rangelow I. W. Microthermomechanical Infrared Sensors. Opto-Electron. Rev. 2014, vol. 22, no. 1, pp. 1–15.
10. Yi Ou, Li Z., Dong F., Chen D., Zhang Q., Xie C. Design, Fabrication, and Characterization of a 240 × 240 MEMS Uncooled Infrared Focal Plane Array With 42-μm Pitch Pixels. J. of Microelectromechanical Systems. 2013, vol. 22, no 2, pp. 452–461.
11. Fetisov E. A., Fedirko V. A., Khafizov R. Z., Zolotarev V. I., Zenyuk D. A., Rudakov G. A. Nanoelectromechanical Thermosensitive Elements. Sb. tr. IV vseross. nauch.-tekhnich. konf. "Problemy razrabotki perspektivnykh mikro- i nanoelektronnykh sistem" [IV All-Russian Scientific and Technical Conference "Problems of Development of Advanced Micro- and Nanoelectronic Systems"]. Moscow, IPPM RAN, 2010, pp. 638–641. (In Russian)
12. Khafizov R. Z., Fetisov E. A., Lapshin R. V., Kirilenko E. P., Anastas'evskaya V. N., Kolpakov I. V. Thermomechanical Sensitivity of an Uncooled Bimaterial Receiver of the IR Range, Built Using the Technology of Micro-Optomechanical Systems. Uspekhi prikladnoi fiziki [Advances in Applied Physics]. 2013, vol. 1, no. 4, pp. 520–523. (In Russian)
13. Rygalin D. B., Fetisov E. A., Khafizov R. Z., Zolotarev V. I., Reshetnikov I. A., Rudakov G. A., Lapshin R. V., Kirilenko E. P. Perspective Integrated Matrix Heat Radiation Receivers with Optical Reading. Izvestiya Vysshikh Uchebnykh Zavedenii. Elektronika [Journal “Proceedings of Universities. Electronics”]. 2013, no. 3(101), pp. 60–63. (In Russian)
14. Fetisov E. A., Khafizov R. Z., Belin A. M., Rudakov G. A., Zolotarev V. I., Fedirko V. A., Rygalin D. B. Infrakrasnye fotochuvstvitel'nye elementy na osnove MEMS. Problemy razrabotki perspektivnykh mikro- i nanoelektronnykh system [Infrared Photosensitive Elements Based on MEMS. Problems of Development of Promising Micro- and Nanoelectronic Systems]. Moscow, IPPM RAN, 2012, pp. 658–661. (In Russian)
15. Reshetnikov I. A., Rygalin D. B., Fetisov E. A., Khafizov R. Z. Thermal Sensors Based on Bimorph MEMS for Remote Monitoring of Temperature Distribution. Atomnyi proekt [Atomic Project]. 2013, vol. 16, pp. 43–44. (In Russian)
16. Lee J. W., Mackenzie K. D., Johnson D., Sasserath J. N., Pearton S. J., Ren F. Low Temperature Silicon Nitride and Silicon Dioxide Film Processing by Inductively Coupled Plasma Chemical Vapor Deposition. J. Electrochem. Society. 2000, vol. 147, no. 4, pp. 1481–1486.
17. Jatta S., Haberele K., Klein A., Shafranek R., Koegel B., Meissner P. Deposition of Dielectric Films with Inductively Coupled Plasma-CVD in Dependence on Presuure and Two RF-Power Sources. Plasma Process Polym. 2009, vol. 6, pp. 5582–5587.
18. Schwarzer N., Richter F. On the Determination of Film Stress from Substrate Bending: Stoney’s Formula and Its Limits. Saxonian Institute of Surface Mechanics, TU Chemnitz, 2006. Available at: http://nbn-resolving.de/urn:nbn:de:swb:ch1-200600111 (accessed: 09.08.2018)
19. Wang H. J., Deng H. A., Chiang S. Y., Su Y. F., Chiang K. N. Development of a Process Modeling for Residual Stress Assessment of Multilayer Thin Film Structure. Thin Solid Films. 2015, Iss. 584, pp. 146–153.
20. Rudakov G. A., Paramonov V. V., Eritsyan G. S. Role of Annealing Conditions of LPCVD Thin Silicon Films in the Changing of the Residue Stress for MEMS Application. 2018 IEEE Conf of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus). Moscow. Russia, 29 Jan.–1 Feb. 2018, Piscataway: IEEE, 2018, pp. 2011–2013.
21. Smith U., Kristensen N., Ericson F., Schweitz J. Local Stress Relaxation Phenomena in Thin Aluminum Films. J. Vac. Sci. Technol. A. 1991, vol. 9, no 4, pp. 2527–2535.
22. Koike J., Utsunomiya S., Shimoyama Y., Maruyama K., Oikawa H. Thermal Cycling Fatigue and Deformation Mechanism in Aluminum Alloy Thin Films on Silicon. J. Mater. Res. 1998, vol. 13, no. 11, pp. 3256–3264.
23. I-Kuan Lin, Yanhang Zhang, Xin Zhang The Deformation of Microcantilever-Based Infrared Detectors During Thermal Cycling. J. Micromech. Microeng. 2008, vol. 18, no. 7, pp. 1–9.
24. Bespalov V. A., Zolotarev V. I., Rudakov G. A., Rygalin D. B., Fedirko V. A., Fetisov E. A., Khafizov R. Z. Termochuvstvitel'nyi polevoi pribor [Thermosensitive Field Device]. Patent RF, no. 2399064 C1. 2010. (In Russian)
25. Fedirko V. A., Zenyuk D. A. Modeling the Thermo Response of Multimorph Microcantilevers. Vestn. MGTU "Stankin". 2009, no. 4(8), pp. 75–81. (In Russian)
Review
For citations:
Rudakov G.A., Khafizov R.Z. INITIAL DEFORMATION OF SINX/AL CANTILEVERS ACCORDING TO THERMAL BUDGET FOR MEMS SENSORS. Journal of the Russian Universities. Radioelectronics. 2018;(4):47-56. (In Russ.) https://doi.org/10.32603/1993-8985-2018-21-4-47-56