Preview

Journal of the Russian Universities. Radioelectronics

Advanced search

Methods for GNSS Interference Mitigation Using Wavelet Transform and Spatial Signal Processing

https://doi.org/10.32603/1993-8985-2025-28-6-6-23

Abstract

Introduction. An analytical review of literature sources reporting various methods for GNSS interference mitigation using wavelet transform and signal processing in spatial and space–time domains is conducted. In his previous publication, the author proposed an approach to classifying GNSS interference mitigation methods and carried out a review of methods based on signal processing in the time, frequency, and time–frequency domains.

Aim. To carry out an analytical review of the basic principles and approaches for GNSS interference mitigation based on wavelet transform and spatial signal processing.

Materials and methods. The analysis involved literature sources published during the period from 2000 to 2024, selected in accordance with the following criteria: application of mitigation methods specifically to GNSS interference and papers containing theoretical justification and experimental confirmation of the effectiveness of the proposed methods. The author discusses methods that employ wavelet transform, super-resolution direction finding algorithms (Capon methods, MUSIC, ESPRIT), as well as methods using a Space-Time Adaptive Processor (STAP).

Results. The results of the conducted comparative review of methods and algorithms for mitigating interference in the reception of GNSS signals based on wavelet transform and signal processing in spatial and space–time domains are presented.

Conclusion. The conducted review and comparative analysis of the most common and effective methods of GNSS interference mitigation are useful for researchers and developers in terms of optimizing their literature search for the most recent achievements in the field. The use of multi-element adaptive antenna arrays is the most effective method for suppressing GNSS interference. Such antenna systems, particularly coupled with Space-Time Adaptive Processor, are a powerful tool for those consumers interested in high noise immunity of receiving GNSS signals and ready to bear the respective costs.

About the Author

K. Yu. Kolomensky
The M. I. Krivosheev National Research Centre for Telecommunication, St Petersburg Branch
Russian Federation

Konstantin Yu. Kolomensky, Cand. Sci. (Eng.) (1986), Deputy Director on Science

4А, Bolshoy Smolensky Ave., Saint Petersburg 192029



References

1. Kolomensky K.Yu. GNSS Interference Mitigation Methods Based on Signal Processing in Time, Frequency and Time-Frequency Domains. Journal of the Russian Universities. Radioelectronics. 2025, vol. 28, no. 4, pp. 6–24. doi: 10.32603/1993-8985-2025-28-4-6-24

2. Paonni M., Jang J. G., Eissfeller B., Wallner S., J. A. Avila Rodriguez, J. Samson, F. A. Fernandez Innovative Interference Mitigation Approaches. Analytical Analysis, Implementation and Validation. 5th ESA Workshop on Satellite Navigation Technologies and European Workshop on GNSS Signals and Signal Processing (NAVITEC), Noordwijk, Netherlands, 08−10 Dec. 2010. IEEE, 2010. doi: 10.1109/NAVITEC.2010.5708055

3. Mosavi M. R., Pashaian M., Rezaei M. J., Mohammadi K. Jamming Mitigation in Global Positioning System Receivers Using Wavelet Packet Coefficients Thresholding. IET Signal Processing. 2015, vol. 9, no. 5, pp. 457–464. doi: 10.1049/iet-spr.2014.0280

4. Wang W., Guo M., Chen J. A New Narrowband Interference Mitigation Algorithm Based on Adaptive Wavelet Packet Decomposition. 4 th Int. Conf. on Instrumentation and Measurement, Computer, Communication and Control, Harbin, China, 18–20 Sept. 2014. IEEE, 2014, pp. 6–11. doi: 10.1109/IMCCC.2014.10

5. Dovis F., Musumeci L. Use of Wavelet Transforms for Interference Mitigation. Intern. Conf. on Localization and GNSS (ICL-GNSS), Tampere, Finland, 29–30 June 2011. IEEE, 2011, pp. 116–121. doi: 10.1109/ICL-GNSS.2011.5955275

6. Merry R. J. E. Wavelet Theory and Applications: a Literature Study. Eindhoven University of Technology, Eindhoven, 2005, 41 p.

7. Policar R. The Engineer’s Ultimate Guide to Wavelet Analysis. Available at: https://web.iitd.ac.in/~sumeet/WaveletTutorial.pdf (accessed 02.06.25).

8. Magiera J., Katulski R. Detection and Mitigation of GPS Spoofing Based on Antenna Array Processing. J. of Applied Research and Technology. 2015, vol. 13, no. 1, pp. 45−57. doi: 10.1016/S1665-6423(15)30004-3

9. Daneshmand S., Jafarnia-Jahromi A., Broumandan A., Lachapelle G. A GNSS Structural Interference Mitigation Technique Using Antenna Array Processing. 8th Sensor Array and Multichannel Signal Processing Workshop (SAM), A Coruna, Spain, 22−25 June 2014. IEEE, 2014, pp. 109−112. doi: 10.1109/SAM.2014.6882352

10. Broumandan A., Jafarnia-Jahromi A., Daneshmand S., Lachapelle G. Overview of Spatial Processing Approaches for GNSS Structural Interference Detection and Mitigation. Proc. of the IEEE. 2016, vol. 104, no. 6, pp. 1246–1257. doi: 10.1109/JPROC.2016.2529600

11. Falletti E., Falco G., Nguyen V. H., Nicola M. Performance Analysis of the Dispersion of Double Differences Algorithm to Detect Single-Source GNSS Spoofing. IEEE Transactions on Aerospace and Electronic Systems. 2021, vol. 57, no. 5, pp. 2674–2688. doi: 10.1109/TAES.2021.3061822

12. Stenberg N., Axell E., Rantakokko J., Hendeby G. Results on GNSS Spoofing Mitigation Using Multiple Receivers. Navigation. J. of Institute of Navigation. 2022, vol. 69, no. 1, pp. 1–29. doi: 10.33012/navi.510

13. Zhang X., Ding C., Xia H., Liu H., Yao Y. INS-Aided Multi-Antenna GNSS Carrier Phase Double Difference Spoofing Detection. IEEE Access. 2023, vol. 11, pp. 19523–19533. doi: 10.1109/ACCESS.2023.3247968

14. Ratynsky M. V. Adapttsiya i sverkhrazreshenie v antennykh reshetkakh [Adaptation and SuperResolution in Antenna Arrays]. 3 rd ed. Moscow, Lenand, 2024, 240 p. (In Russ.)

15. Sklar J. R. Interference Mitigation Approaches for the Global Positioning System. Available at: https://archive.ll.mit.edu/publications/journal/pdf/vol14_no2/14_2interferencemitigation.pdf (accessed 29.03.25).

16. Kappen G., Haettich C., Meurer M. Towards a Robust Multi-Antenna Mass Market GNSS Receiver. IEEE/ION Position, Location and Navigation Symp., Myrtle Beach, USA, 23–26 Apr. 2012. IEEE, 2012, pp. 291–300. doi: 10.1109/PLANS.2012.6236894

17. Magiera J. A Multi-Antenna Scheme for Early Detection. Sensors. 2019, vol. 19, iss. 10, art. no. 2411. doi: 10.3390/s19102411

18. Carvalho A. P. S. D., Antreich F. PreCorrelation GNSS Spoofing Mitigation. XXV Simp. De Aplicações Operationais Em Áreas De Defesa (SIGE 2023), São José dos Campos, Brazil, 26–28 Sept. 2023. IEEE, 2023, pp. 1−6.

19. Sadler D. J. Accuracy of Adcock Watson-Watt DF in the Presence of Channel Errors. Sensor Signal Processing for Defence Conf. (SSPD), Brighton, UK, 09−10 May 2019. IEEE, 2019, pp. 1−5. doi: 10.1109/SSPD.2019.8751643

20. Liu L., Yu T. An Analysis Method for Solving Ambiguity in Direction Finding with Phase Interferometers. Circuits, Systems, and Signal Processing. 2021, vol. 40, pp. 1420–1437. doi: 10.1007/s00034-020-01536-1

21. Sengul H., Gürel A. E., Orduyilmaz A. Passive Direction Finding Using Correlative Interferometer. 29th Signal Processing and Communications Applications Conf. (SIU), Istanbul, Turkey, 09–11 June 2021. IEEE, 2021. doi: 10.1109/SIU53274.2021.9477965

22. Alsaleem N. A. Moskalets M., Teplitskaya S. The analysis of Methods for Determining Direction of Arrival of Signals in Problems of Space-Time Access. Eastern-European J. of Enterprise Technologies. 2016, vol. 4, no. 9 (82), pp. 36–44. doi: 10.15587/1729-4061.2016.75716

23. Kostromitsky S. M., Davydenko I. N., Dyatko A. A. Methods of Angular Super-Resolution Using Adaptive Antenna Arrays. Basis. 2021, no. 1 (9), pp. 39–46. (In Russ.) doi: 10.51962/2587-8042_2021_9_39

24. Zhao Y., Shen F., Xu G., Wang G. A SpatialTemporal Approach Based on Antenna Array for GNSS Anti-Spoofing. Sensors. 2021, vol. 21, iss. 3, p. 929. doi: 10.3390/s21030929

25. Al-Azzo M. F., Al-Sabaawi K. I. Comparison between Classical and Modern Methods of Direction of Arrival (DOA) Estimation. Int. J. of Advances in Engineering & Technology. 2014, vol. 7, iss. 3, pp. 1082–1090.

26. Gunjan T., Chaitanya G. Study of Various Algorithms for Direction of Arrival Estimation in Smart Antenna. Int. J. of Scientific & Engineering Research. 2014, vol. 5, iss. 3, pp. 440–443.

27. Lavate T. B., Kokate V. K., Sapkal A. M. Performance Analysis of MUSIC and ESPRIT DOA Estimation Algorithms for Adaptive Array Smart Antenna in Mobile Communication. 2nd Int. Conf. on Computer and Network Technology, Bangkok, Thailand, 23–25 Apr. 2010. IEEE, 2010, pp. 308–311. doi: 10.1109/ICCNT.2010.45

28. Liu J. Research on Time of Arrival Estimation Algorithm Based on ESPRIT. Int. J. of Computer Science and Information Technology. 2024, vol. 3, no. 3, pp. 192−198. doi: 10.62051/ijcsit.v3n3.19

29. Fante R. L., Vaccaro J. J. Wideband Cancellation of Interference in a GPS Receive Array. IEEE Transactions on Aerospace and Electronic Systems. 2000, vol. 36, no. 2, pp. 549–564. doi: 10.1109/7.845241

30. Konovaltsev A., De Lorenzo D. S., Hornbostel A., Enge P. Mitigation of Continuous and Pulsed Radio Interference with GNSS Antenna Arrays. ION GNSS 21st Int. Technical Meeting of the Satellite Division, Savannah, GA, 16–19 Sept. 2008. Savannah International Convention Center, 2008, pp. 2786–2795.

31. Carrie G., Vincent F., Deloues T., Pietin D., Renard A., Letestu F. Optimal STAP Algorithms to GNSS Receivers. Proc. of the European Navigation Conf., Manchester UK, 2006. Manchester Intern. Convention Centre, 2006, pp. 1–14.

32. Kolomensky K. Yu. Interference Detection for GNSS Receivers. Part I. Ehlektrosvyaz'. 2024, no. 10, pp. 44–51. (In Russ.) doi: 10.34832/ELSV.2024.59.10.007

33. Kolomensky K. Yu. Interference Detection for GNSS Receivers. Part II. Ehlektrosvyaz'. 2024, no. 11, pp. 39–48. (In Russ.) doi: 10.34832/ELSV.2024.60.11.006

34. Kolomensky K.Yu., Demidova A.Yu. Integration of Satellite Segment into 3GPP Specifications for 5G Networks. Part I. Ehlektrosvyaz'. 2023, no. 6, pp. 14–19. (In Russ.) doi: 10.34832/ELSV.2023.43.6.002

35. Kolomensky K. Yu., Demidova A. Yu. Integration of Satellite Segment into 3GPP Specifications for 5G Networks. Part II. Ehlektrosvyaz'. 2023, no. 7, pp. 13–19. (In Russ.) doi: 10.34832/ELSV.2023.44.7.002

36. Pastukh A. S., Kalugina D. I., Devyatkin E. E., Ivankovich M. V. Challenges of Using L- and S-bands for the Direct-to-Cellular Hybrid Satellite 5GA/6G Systems. Ehlektrosvyaz'. 2023, no. 7, pp. 2–12. (In Russ.) doi: 10.34832/ELSV. 2023.44.7.001

37. Liu R., Yan Z., Chen Q., Liao G., Zhu Q. Localization of GNSS Spoofing Interference Source Based on a Moving Antenna. Remote Sensing. 2023, vol. 15, iss. 23, art. no. 5497. doi: 10.3390/rs15235497

38. Nielsen J., Broumandan A., Lachapelle G. Spoofing Detection and Mitigation with a Moving Handheld Receiver. Available at: http://gpsworld.com/gnsssystemreceiver-designspoofing-detection-and-mitigation10456/ (accessed 31.03.25).

39. Bin Q., Ziwen C., Yong X., Liang H., Sheng S. GPS Spoofing-Based Time Synchronization Attack in Advanced Metering Infrastructure and Its Protection. The J. of Engineering. 2020, vol. 2020, iss. 9, pp. 809–815. doi: 10.1049/joe.2020.0022

40. Mohanty A., Gao G. A Survey of Machine Learning Techniques for Improving Global Navigation Satellite Systems. EURASIP J. on Advances in Signal Processing. 2024, art. no. 73, pp. 1–40. doi: 10.1186/s13634-024-01167-7

41. Mehr I. E, Dovis F. A Deep Neural Network Approach for Classification of GNSS Interference and Jamming. IEEE Trans. on Aerospace and Electronic Systems. 2024, vol. 61, no. 2, pp. 1660–1676. doi: 10.1109/taes.2024.3462662

42. Marchand G., Toumi A., Seco-Granados G., Lopez-Salcedo J. A. Machine Learning Assessment of Anti-Spoofing Techniques for GNSS Receivers. Work-inProgress in Hardware and Software for Location Computation, Castellon, Spain, 6–8 Jun 2023. HAL Open Science, 2023, pp. 1–14.

43. Bai L., Sun C., Dempster A.G., Zhao H., Feng W. GNSS Spoofing Detection and Mitigation with a Single 5G Base Station Aiding. IEEE Transactions on Aerospace and Electronic Systems. 2024, vol. 60, iss. 4, pp. 4601–4620. doi: 10.1109/TAES.2024.3382074

44. Zhang Y. D., Amin M. G., Wang B. Mitigation of Sparsely Sampled Nonstationary Jammers for MultiAntenna GNSS Receivers. IEEE Intern. Conf. on Acoustics, Speech and Signal Proc. (ICASSP), Shanghai, China, 20–25 March 2016. IEEE, 2016, pp. 1–5. doi: 10.1109/ICASSP.2016.7472942


Review

For citations:


Kolomensky K.Yu. Methods for GNSS Interference Mitigation Using Wavelet Transform and Spatial Signal Processing. Journal of the Russian Universities. Radioelectronics. 2025;28(6):6-23. (In Russ.) https://doi.org/10.32603/1993-8985-2025-28-6-6-23

Views: 16

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1993-8985 (Print)
ISSN 2658-4794 (Online)