Preview

Journal of the Russian Universities. Radioelectronics

Advanced search

Effect of Grain Sizes on Temperature Hysteresis of Ceramic Barium Titanate

https://doi.org/10.32603/1993-8985-2025-28-2-57-68

Abstract

Introduction. The growing power of modern electronic devices imposes stricter requirements on their cooling systems. One promising cooling method employs the electrocaloric effect as the most accessible and simple phenomenon among all caloric effects to implement. However, thermal hysteresis near the phase transition point negatively affects the magnitude of the electrocaloric response and the cooling efficiency. Another important factor is the requirement for environmental friendliness of the devices, which makes the use of lead-containing compounds undesirable despite their pronounced electrocaloric effect. A possible alternative to such materials comprises solid solutions based on barium titanate; however, their temperature hysteresis phenomena are poorly studied.
Aim. Investigation of temperature hysteresis phenomena in ferroelectric ceramics.
Materials and methods. The samples under study were placed in a liquid thermostat to undergo a heating and cooling cycle at a given rate. The value of temperature hysteresis was calculated from the temperature dependencies of dielectric permittivity. The average grain size was estimated using SEM images of the sample surface.
Results. The influence of synthesis processes on the structure and grain size of ceramic barium titanate, as well as its dielectric properties, were studied. Temperature dependencies of the grain size of barium titanate and the porosity of sintered samples were studied experimentally. The temperature range of effective sintering above 1320 °C was determined. Dielectric characteristics of the samples at heating and cooling were studied. The parameters of temperature hysteresis and dielectric properties were determined. Changes in the value of temperature hysteresis were shown to be associated with changes in the grain size of barium titanate and the contact area between the grains.
Conclusion. An assumption about the optimal temperature of sample sintering was made. At this temperature, the material exhibits sufficiently good dielectric properties at a low temperature hysteresis.

About the Authors

I. L. Mylnikov
Saint Petersburg Electrotechnical University
Russian Federation

Ivan L. Mylnikov, Master in Electronics and Nanoelectronics (2013), Assistant of the Department of Physics

5 F, Professor Popov St., St Petersburg 197022



I. P. Soshnikov
Alferov University; Ioffe Institute; Institute for Analytical Instrumentation of the Russian Academy of Sciences
Russian Federation

Ilya P. Soshnikov, Cand. Sci. (Eng.) (1997), Leading Researcher

8, Khlopina St., St Petersburg 194021



A. I. Dedyk
Saint Petersburg Electrotechnical University
Russian Federation

Antonina I. Dedyk, Cand. Sci. (Eng.) (1986), Associate Professor of the Department of Physics

5 F, Professor Popov St., St Petersburg 197022



Yu. V. Pavlova
Saint Petersburg Electrotechnical University
Russian Federation

Yuliya V. Pavlova, Cand. Sci. (Eng.) (2008), Associate Professor of the Department of Physics

5 F, Professor Popov St., St Petersburg 197022



A. S. Anokhin
Saint Petersburg Electrotechnical University; ITMO University
Russian Federation

Alexander S. Anokhin, Cand. Sci. (Eng.) (2022), Engeneer of educational center "Energy Effective engineering systems"

49 A, Kronverkskii Ave., St Petersburg 197101



A. V. Es’kov
Saint Petersburg Electrotechnical University
Russian Federation

Andrej V. Es'kov, Cand. Sci. (Eng.) (2014), Head of the Laboratory of Technology of Materials and Elements of Integrated Microwave Photonics

5 F, Professor Popov St., St Petersburg 197022



P. Yu. Belyavskiy
Saint Petersburg Electrotechnical University
Russian Federation

Pavel Yu. Belyavskiy, Cand. Sci. (Eng.) (2008), Engineer of the Department of Physical Electronics and Technology

5 F, Professor Popov St., St Petersburg 197022



A. S. Antonova
Saint Petersburg Electrotechnical University
Russian Federation

Anna S. Antonova, Master in Electronics and Nanoelectronics (2024), Postgraduate student of the Department of Physical Electronics and Technologies

5 F, Professor Popov St., St Petersburg 197022



A. A. Semenov
Saint Petersburg Electrotechnical University
Russian Federation

Alexander A. Semenov, Dr Sci. (Eng.) (2017), Head of the Department of Physical Electronics and Technology

5 F, Professor Popov St., St Petersburg 197022



References

1. Kim W., Zide J., Gossard A., Klenov D., Stemmer S., Shakouri A., Majumdar A. Thermal Conductivity Reduction and Thermoelectric Figure of Merit Increase by Embedding Nanoparticles in Crystalline Semiconductors. Physical Rev. Let. 2006, vol. 96, no. 4, art. no. 045901. doi: 10.1103/PhysRevLett.96.045901

2. Valant M. Electrocaloric Materials for Future Solid-State Refrigeration Technologies. Progress in Materials Science. 2012, vol. 57, no. 6, pp. 980–1009. doi: 10.1016/j.pmatsci.2012.02.001

3. Ožbolt M., Kitanovski A., Tušek J., Poredoš A. Electrocaloric Refrigeration: Thermodynamics, State of the Art and Future Perspectives. Int. J. of Refrigeration. 2014, vol. 40, pp. 174–188. doi: 10.1016/j.ijrefrig.2013.11.007

4. Mischenko A. S., Zhang Q., Scott J. F., Whatmore R. W., Mathur N. D. Giant Electrocaloric Effect in Thin-Film PbZr0.95Ti0.05O3. Science. 2006, vol. 311, no. 5765, pp. 1270–1271. doi: 10.1126/science.1123811

5. Shaobo L., Yanqiu L. Research on the Electrocaloric Effect of PMN/PT Solid Solution for Ferroelectrics MEMS Microcooler. Materials Science and Engineering: B. 2004, vol. 113, no. 1, pp. 46–49. doi: 10.1016/j.mseb.2004.06.010

6. Luo L., Chen H., Zhu Y., Li W., Luo H., Zhang Y. Pyroelectric and Electrocaloric Effect of <1 1 1>-Oriented 0.9 PMN–0.1 PT Single Crystal. J. of Alloys and Compounds. 2011, vol. 509, no. 32, pp. 8149–8152. doi: 10.1016/j.jallcom.2011.05.111

7. Correia T. M., Young J. S., Whatmore R. W., Scott J. F., Mathur N. D., Zhang Q. Investigation of the Electrocaloric Effect in a PbMg2/3Nb1/3O3–PbTiO3 Relaxor Thin Film. Applied Physics Let. 2009, vol. 95, no. 18, art. no. 182904. doi: 10.1063/1.3257695

8. Wang S. B., Dai G. Z., Yao Y. B., Zhao X. B., Tao T., Liang B., Lu S. G. Direct and Indirect Measurement of Large Electrocaloric Effect in B2O3–ZnO Glass Modified Ba0.65Sr0.35TiO3 Bulk Ceramics. Scripta Materialia. 2021, vol. 193, pp. 59–63. doi: 10.1016/j.scriptamat.2020.10.033

9. Xu Z., Qiang H. Enhanced Electrocaloric Effect in Mn+Y Co-doped BST Ceramics Near Room Temperature. Materials Let. 2017, vol. 191, pp. 57–60. doi: 10.1016/j.matlet.2016.12.120

10. Liu X. Q., Chen T. T., Fu M. S., Wu Y. J., Chen X. M. Electrocaloric Effects in Spark Plasma Sintered Ba0.7Sr0.3TiO3–Based Ceramics: Effects of Domain Sizes and Phase Constitution. Ceramics Intern. 2014, vol. 40, no. 7, pp. 11269–11276. doi: 10.1016/j.ceramint.2014.03.175

11. Mylnikov I. L., Dedyk A. I., Pavlova Yu. V., Nurmuhametov V. Yu. Issledovanie dielektricheskih svojstv keramik titanata bariya, izgotovlennyh pri raznyh temperaturah spekaniya [Study of Dielectric Properties of Barium Titanate Ceramics Produced at Different Sintering Temperatures]. Proc. of the XII All-Russ. Scientific and Technical Conf. "Microwave Electronics and Microelectronics", St Petersburg, 29 May–03 June 2023. St Petersburg, Saint Petersburg Electrotechnical University, 2023, pp. 383–387. (In Russ.)

12. Smolenskiy G. A. Fizika segnetoelektricheskih yavlenij [Physics of Ferroelectric Phenomena]. L.: Nauka, 1985, 396 p. (In Russ.)

13. Jona F., Shirane G. Ferroelectric Crystals. New York, Pergamon Press, 1962, 402 p.

14. Patru R. E., Ganea C. P., Stanciu C. A., Surdu V. A., Trusca R., Ianculescu A. C., Pintilie I., Pintilie L. (Ba,Sr)TiO3 Solid Solutions Sintered from Sol Gel Derived Powders: An Insight into the Composition and Temperature Dependent Dielectric Behavior. Ceramics Intern. 2020, vol. 46, no. 4, pp. 4180–4190. doi: 10.1016/j.ceramint.2019.10.136

15. Liu Y., Haibibu A., Xu W., Han Z., Wang Q. Observation of a Negative Thermal Hysteresis in Relaxor Ferroelectric Polymers. Advanced Functional Materials. 2020, vol. 30, no. 25, art. no. 2000648. doi: 10.1002/adfm.202000648

16. Martirena H. T., Burfoot J. C. Grain-Size Effects on Properties of Some Ferroelectric Ceramics. J. of Physics C: Solid State Physics. 1974, vol. 7, no. 17, pp. 3182–3192. doi: 10.1088/00223719/7/17/024

17. Kim B. C., Chae K. W., Cheon C. I. Effect of Sintering Temperature on the Ferroelectric Properties and the Electro-Caloric Effect in Barium-Titanate Ceramics. J. of the Korean Physical Society. 2020, vol. 76, no. 3, pp. 226–230. doi: 10.3938/jkps.76.226

18. Kartashev A. V., Bondarev V. S., Flyorov I. N., Gorev M. V., Pogorel'cev E. I., SHabanov A. V., Molokeev M. S., Guillemet-Fritsch S., Raevskij I. P. Study of the Physical Properties and Electrocaloric Effect in the BaTiO3 Nano- and Microceramics. Physics of the Solid State. 2019, vol. 61, pp. 1052–1061. doi: 10.1134/S1063783419060088

19. Zheng P., Zhang J. L., Tan Y. Q., Wang C. L. Grain-Size Effects on Dielectric and Piezoelectric Properties of Poled BaTiO3 Ceramics. Acta Materialia. 2012, vol. 60, no. 13–14, pp. 5022–5030. doi: 10.1016/j.actamat.2012.06.015

20. Malyshkina O. V., Ivanova A. I., Shishkov G. S., Mart'yanov A. A. Dependence of the Dielectric Properties of Barium Titanate Ceramics and a Composite Based on It on the Sintering Temperature. Materials of Electronics Engineering. 2021, vol. 24, no. 1, pp. 40–47. (In Russ.) doi: 10.17073/160935772021-1-40-47

21. Ritter J. J., Roth R. S., Blendell J. E. Alkoxide Precursor Synthesis and Characterization of Phases in the Barium-Titanium Oxide System. J. of the American Ceramic Society. 1986, vol. 69, no. 2, pp. 155–162. doi: 10.1111/j.1151-2916.1986.tb04721.x

22. Kirby K. W., Wechsler B. A. Phase Relations in the Barium Titanate-Titanium Oxide System. J. of the American Ceramic Society. 1991, vol. 74, no. 8, pp. 1841–1847. doi: 10.1111/j.1151-2916.1991.tb07797.x

23. Lu X., Jin Z. Thermodynamic Assessment of the BaO–TiO2 Quasibinary System. Calphad. 2000, vol. 24, no. 3, pp. 319–338. doi: 10.1016/S0364-5916(01)00008-6

24. Gong W., Jin Z. Thermodynamic Description of BaO–SrO–TiO2 System. Calphad. 2002, vol. 26, no. 3, pp. 403–418. doi: 10.1016/S0364-5916(02)00053-6

25. Jones W. D. Fundamental Principles of Powder Metallurgy. London, E. Arnold, 1960, 1032 p.

26. Nelson S. O. Density-Permittivity Relationships for Powdered and Granular Materials. IEEE Trans. on Instrumentation and Measurement. 2005, vol. 54, no. 5, pp. 2033–2040. doi: 10.1109/TIM.2005.853346


Review

For citations:


Mylnikov I.L., Soshnikov I.P., Dedyk A.I., Pavlova Yu.V., Anokhin A.S., Es’kov A.V., Belyavskiy P.Yu., Antonova A.S., Semenov A.A. Effect of Grain Sizes on Temperature Hysteresis of Ceramic Barium Titanate. Journal of the Russian Universities. Radioelectronics. 2025;28(2):57-68. (In Russ.) https://doi.org/10.32603/1993-8985-2025-28-2-57-68

Views: 140


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1993-8985 (Print)
ISSN 2658-4794 (Online)