Combined Application of Deep Learning and Radiomic Features for Classification of Lung CT Images
https://doi.org/10.32603/1993-8985-2025-28-1-126-137
Abstract
Introduction. In oncology, accurate classification of lung cancer mutations plays a key role in developing personalized treatment strategies. Lung cancer, distinguished by its heterogeneity, presents significant challenges in diagnosis and treatment, requiring innovative approaches for precise mutation classification.
Aim. To introduce a new methodology combining deep learning and radiomic features extracted from computed tomography (CT) images for classification of lung cancer mutations.
Materials and methods. The ResNet18 architecture was adapted to integrate radiomic features directly into the deep learning workflow. The use of a convolutional neural network enabled large volumes of data to be processed, surpassing the performance of conventional methods. The analysis involved identification of significant radiomic features, such as texture, shape, and tumor boundaries, which were automatically extracted and used to train the model. The technique was tested on an extensive dataset containing CT images of various lung cancer subtypes, including adenocarcinoma and squamous cell carcinoma.
Results. The model demonstrated an overall mutation classification accuracy of 98.6 %, significantly exceeding the results achieved using conventional approaches. The high accuracy confirms the effectiveness of combining radiomic features with deep learning in identifying various genetic mutations in lung cancer. The results also indicate the high potential of the method in the development of non-invasive diagnostic tools and improving personalized treatment approaches.
Conclusion. This work emphasizes the importance of integrating high-level abstractions of deep learning models with detailed analysis of radiomic data to enhance the predictive accuracy of non-invasive diagnostic tools, which could significantly improve diagnostic processes and contribute to the development of treatment strategies in oncology.
Keywords
About the Authors
Shariati FaridoddinRussian Federation
Shariati Faridoddin, Master in Infocommunication technologies and communication systems (2021), Assistant of Higher School of Applied Physics and Space Technologies of Institute of Electronics and Telecommunications
29 Politekhnicheskaya St., St Petersburg 195251
V. A. Pavlov
Russian Federation
Vitalii A. Pavlov, Cand. Sci. (Eng.) (2020), Associate professor (2023) of Higher School of Applied Physics and Space Technologies of Institute of Electronics and Telecommunications
29 Politekhnicheskaya St., St Petersburg 195251
References
1. Faridoddin Shariaty, Pavlov V. A., Zavjalov S. V., Mahdi Orooji, PervuninaT. M. Application of a Texture Appearance Model for Segmentation of Lung Nodules on Computed Tomography of the Chest. J. of the Russian Universities. Radioelectronics. 2022, vol. 25, no. 3, pp. 96–117. doi: 10.32603/1993-8985-2022-25-3-96-117
2. Haim O., Abramov S., Shofty B., Fanizzi C., DiMeco F., Avisdris N., Ram Z., Artzi M., Grossman R. Predicting EGFR Mutation Status by a Deep Learning Approach in Patients with Non-Small Cell Lung Cancer Brain Metastases. J. of Neuro-Oncology. 2022, vol. 157, iss. 1, pp. 63–69. doi: 10.21203/rs.3.rs-1020480/v1
3. Skalunova M., Faridoddin Shariaty, Rozov S., Reza Radmard A. Personalized Chemotherapy Selection for Lung Cancer Patients Using Machine Learning and Computed Tomography. 2023 Intern. Conf. on Electrical Engineering and Photonics (EExPolytech), St Petersburg, Russia, 19–20 Oct. 2023. IEEE, 2023. doi: 10.1109/EExPolytech58658.2023.10318700
4. Coudray N., Ocampo P. S., Sakellaropoulos T., Narula N., Snuderl M., Fenyö D., Moreira A. L., Razavian N., Tsirigos A. Classification and Mutation Prediction from Non-Small Cell Lung Cancer Histopathology Images Using Deep Learning. Nature Medicine, 2018, vol. 24, iss. 10, pp. 1559–1567. doi: 10.1038/s41591-018-0177-5
5. Tomita N., Tafe L. J., Suriawinata A. A., Tsongalis G. J., Nasir-Moin M., Dragnev K., Hassanpour S. Predicting Oncogene Mutations of Lung Cancer Using Deep Learning and Histopathologic Features on Whole-Slide Images. Translational Oncology. 2022, vol. 24, p. 101494. doi: 10.1016/j.tranon.2022.101494
6. Wang S., Shi J., Ye Z., Dong D., Yu D., Zhou M., Liu Y., Gevaert O., Wang K., Zhu Y., Zhou H., Liu Z., Tian J. Predicting EGFR Mutation Status in Lung Adenocarcinoma on Computed Tomography Image Using Deep Learning. European Respiratory J. 2019, vol. 53, iss. 3, p. 1800986. doi: 10.1183/13993003.00986-2018
7. Faridoddin Shariaty, Pavlov V. A., Fedyashina S. V., Serebrennikov N. A. Integrating Deep Learning and Explainable AI for Non-Invasive Prediction of EGFR and KRAS Mutations in NSCLC: A Novel Radiogenomic Approach. V Intern. Conf. on Neural Networks and Neurotechnologies (NeuroNT), St Petersburg, Russia, 20 June 2024. IEEE, 2024. doi: 10.1109/NeuroNT62606.2024.10585441
8. Bakr S., Gevaert O., Echegaray S., Ayers K., Zhou M., Shafiq M., Zheng H., Benson J. A., Zhang W., Leung A. N. C., Kadoch M., Hoang C. D., Shrager J., Quon A., Rubin D. L., Plevritis S. K., Napel S. A Radiogenomic Dataset of Non-Small Cell Lung Cancer. Scientific Data. 2018, vol. 5, iss. 1, pp. 1–9. doi: 10.1038/sdata.2018.202
9. Data for NSCLC Radiogenomics. Available at: https://www.cancerimagingarchive.net/collection/nsclcradiogenomics/ (accessed 15.04.2024)
10. Amiri S., Akbarabadi M., Abdolali F., Nikoofar A., Esfahani A. J., Cheraghi S. Radiomics Analysis on CT Images for Prediction of Radiation-Induced Kidney Damage by Machine Learning Models. Computers in Biology and Medicine. 2021, vol. 133, p. 104409. doi: 10.1016/j.compbiomed.2021.104409
11. Reiazi R., Abbas E., Famiyeh P., Rezaie A., Kwan J. Y. Y., Patel T., Bratman S. V., Tadic T., Liu F.- F., Haibe-Kains B. The Impact of the Variation of Imaging Parameters on the Robustness of Computed Tomography Radiomic Features: A Review. Computers in Biology and Medicine. 2021, vol. 133, p. 104400. doi: 10.1016/j.compbiomed.2021.104400
12. Shiri I., Sorouri M., Geramifar P., Nazari M., Abdollahi M., Salimi Y., Khosravi B., Askari D., Aghaghazvini L., Hajianfar G., Kasaeian A., Abdollahi H., Arabi H., Rahmim A., Radmard A. R., Zaidi H. Machine Learning-Based Prognostic Modeling Using Clinical Data and Quantitative Radiomic Features from Chest CT Images in COVID-19 Patients. Computers in Biology and Medicine. 2021, vol. 132, p. 104304. doi: 10.1016/j.compbiomed.2021.104304
13. Sadhwani A., Chang H.-W., Behrooz A., Brown T., Auvigne-Flament I., Patel H., Findlater R., Velez V., Tan F., Tekiela K., Wulczyn E., Yi E. S., Mermel C. H., Hanks D., Cameron Chen P.-H., Kulig K., Batenchuk C., Steiner D. F., Cimermancic P. Comparative Analysis of Machine Learning Approaches to Classify Tumor Mutation Burden in Lung Adenocarcinoma Using Histopathology Images. Scientific reports. 2021, vol. 11, iss. 1, p. 16605. doi: 10.1038/s41598-021-95747-4
14. Taranova D., Shariaty F. Radiomic Analysis for Prediction of T Stage Parameter (T1-T2) in Lung Cancer Patients. Nedelya nauki IEiT, SPb., 14–18 Nov. 2022, pp. 77–80.
15. Shariaty F., Duan L., Pavlov V., Mousavi M., Pervunina T. A Novel Gene Assay Combined with Medical Imaging for Accurate Prognosis and Prediction of Cancer Type. Intern. Conf. on Electrical Engineering and Photonics (EExPolytech), SPb., 20–21 Oct. 2022. IEEE, 2022, pp. 118–121. doi: 10.1109/EExPolytech56308.2022.9950997
Review
For citations:
Faridoddin Sh., Pavlov V.A. Combined Application of Deep Learning and Radiomic Features for Classification of Lung CT Images. Journal of the Russian Universities. Radioelectronics. 2025;28(1):126-137. (In Russ.) https://doi.org/10.32603/1993-8985-2025-28-1-126-137