Methods of Intraoperative Diagnosis in Puncture Minimally Invasive Surgery of Liver Cancer
https://doi.org/10.32603/1993-8985-2024-27-6-106-119
Abstract
Introduction. Liver cancer is a leading cause of death in oncology. The final diagnosis is determined by a pathomorphological analysis of tissue specimens obtained during percutaneous puncture biopsy. Despite its obvious advantages, this method is associated with the possibility of obtaining nondiagnostic specimens and the need for long wait times. Therefore, additional diagnostic methods should be developed to improve the quality of surgical care for oncology patients. Optical methods are a sensitive tool for determining the metabolic characteristics of biotissues. Such methods may improve the efficacy of conventional puncture procedures by developing approaches for rapid diagnosis of liver neoplasm types.
Aim. Development of intraoperative diagnostic methods for in vivo minimally invasive liver cancer surgery that allow differentiation between liver parenchyma and tumors, as well as classification of neoplasm types (primary malignant, metastatic, and benign) based on optical spectroscopy and machine learning.
Materials and methods. The methods of clinical research, descriptive mathematical statistics, and machine learning were used.
Results. Spectroscopic methods of intraoperative diagnostics, tested in clinic settings, are proposed. These methods demonstrated high diagnostic accuracy during percutaneous puncture biopsy of liver neoplasms. Application of the developed classifiers enables detection of pathological changes with a sensitivity and specificity of 0.90 and 0.95, respectively. When a tumor tissue is detected, differentiation of neoplasm type is possible with a sensitivity and specificity reaching 0.80 and 0.95, respectively.
Conclusion. Recent advances in optics have enabled the implementation of optical technologies in minimally invasive surgery, particularly the integration of fiber optic probes into standard puncture needles. The methods described in this paper facilitate preliminary conclusion about the tumor type with automated processing of optical spectroscopy data during puncture interventions. The application of these methods in clinical practice will increase the accuracy and reliability of puncture biopsy, which is essential in determining a personalized treatment strategy.
Keywords
About the Author
E. V. PotapovaRussian Federation
Elena V. Potapova, Cand. Sci. (2008), Associate Professor (2017), Associate Professor of the Department of Instrumentation, Metrology and Certification, Senior Researcher of Research and Development Center of Biomedical Photonics
95 Komsomolskaya St., Orel 302026
References
1. Siegel R. L., Miller K. D., Fuchs H. E., Jemal A. Cancer Statistics. CA: a Cancer J. for Clinicians. 2022, vol. 72, no. 1, pp. 7–33. doi: 10.3322/caac.21708
2. Attwa M. H., El-Etreby S. A. Guide for Diagnosis and Treatment of Hepatocellular Carcinoma. World J. of Hepatology. 2015, vol. 7, no. 12, pp. 1632–1651. doi: 10.4254/wjh.v7.i12.1632
3. Candita G., Rossi S., Cwiklinska K., Fanni S. C., Cioni D., Lencioni R., Neri E. Imaging Diagnosis of Hepatocellular Carcinoma: A State-of-the-Art Review. Diagnostics. 2023, vol. 13, no. 4, p. 625. doi: 10.3390/diagnostics13040625
4. Roberts L. R., Sirlin C. B., Zaiem F., Almasri J., Prokop L. J., Heimbach J. K., Murad M. H., Mohammed K. Imaging for the Diagnosis of Hepatocellular Carcinoma: A Systematic Review and Meta-Analysis. Hepatology. 2018, vol. 67, no. 1, pp. 401–421. doi: 10.1002/hep.29487
5. Russo F. P., Imondi A., Lynch E. N., Farinati F. When and How Should We Perform a Biopsy for HCC in Patients with Liver Cirrhosis in 2018? A Review. Digestive and Liver Disease: Official J. of the Italian Society of Gastroenterology and the Italian Association for the Study of the Liver. 2018, vol. 50, no. 7, pp. 640–646. doi: 10.1016/j.dld.2018.03.014
6. Francque S. M., De Pauw F. F., Van den Steen G. H., Van Marck E. A., Pelckmans P. A., Michielsen P. P. Biopsy of Focal Liver Lesions: Guidelines, Comparison of Techniques and Cost-Analysis. Acta Gastro-Enterologica Belgica. 2003, vol. 66, no. 2, pp. 160–165.
7. Choi S. H., Han K. H., Yoon J. H., Moon H. J., Son E. J., Youk J. H., Kim E. K., Kwak J. Y. Factors Affecting Inadequate Sampling of Ultrasound-Guided Fine-Needle Aspiration Biopsy of Thyroid Nodules. Clinical Endocrinology. 2011, vol. 74, no. 6, pp. 776– 782. doi: 10.1111/j.1365-2265.2011.04011.x
8. Gomez-Macías G. S., Garza-Guajardo R., SeguraLuna J., Barboza-Quintana O. Inadequate Fine Needle Aspiration Biopsy Samples: Pathologists Versus Other Specialists. CytoJournal. 2009, vol. 6, art. no. 4. doi: 10.4103/1742-6413.52831
9. Ducreux M., Abou-Alfa G. K., Bekaii-Saab T., Berlin J., Cervantes A., de Baere T., Eng C., Galle P., Gill S., Gruenberger T., Haustermans K., Lamarca A., LaurentPuig P., Llovet J. M., Lordick F., Macarulla T., Mukherji D., Muro K., Obermannova R., O'Connor J. M., O'Reilly E. M., Osterlund P., Philip P., Prager G., Ruiz-Garcia E., Sangro B., Seufferlein T., Tabernero J., Verslype C., Wasan H., Van Cutsem E. The Management of Hepatocellular Carcinoma. Current Expert Opinion and Recommendations Derived from the 24th ESMO/World Congress on Gastrointestinal Cancer, Barcelona, 2022. ESMO open, 2023, vol. 8, no. 3, p. 101567. doi: 10.1016/j.esmoop.2023.101567
10. Voutsinas N., Lekperic S., Barazani S., Titano J. J., Heiba S. I., Kim E. Treatment of Primary Liver Tumors and Liver Metastases, Part 1: Nuclear Medicine Techniques. J. of Nuclear Medicine: Official Publication, Society of Nuclear Medicine. 2018, vol. 59, no. 11, pp. 1649–1654. doi: 10.2967/jnumed.116.186346
11. Dunaev А. V. Mul'timodal'naya opticheskaya diagnostika mikrocirkulyatorno-tkanevyh sistem organizma cheloveka: monografiya [Multimodal Optical Diagnostics of Microcirculatory and Tissue Systems of the Human Body: Monograph]. Staryj Oskol, ТNТ, 2022, 440 p. (In Russ.)
12. Dunaev А. V. Method and a Device for Evaluating the Functional State of Microcirculatory-Tissue Systems of the Human Body Based on Multiparametric Optical Diagnostics. J. of the Russian Universities. Radioelectronics. 2020, vol. 23. no. 4, pp. 77–91. doi: 10.32603/1993-8985-2020-23-4-77-91 (In Russ.).
13. Croce A. C., Bottiroli G. Autofluorescence Spectroscopy and Imaging: A Tool for Biomedical Research and Diagnosis. European J. of Histochemistry: EJH. 2014, vol. 58, no. 4, p. 2461. doi: 10.4081/ejh.2014.2461
14. Zherebtsov E. А., Dremin V. V., Zherebtsova А. I., Potapova Е. V., Dunaev A. V. Fluorescentnaya diagnostika mitohondrial'noj funkcii v epitelial'nyh tkanyah in vivo: monografiya [Fluorescence Diagnostics of Mitochondrial Function in Epithelial Tissues in Vivo: Monograph]. Orel, Orel State University, 2018, 107 p. (In Russ.)
15. Arabachyan M. I., Shupletsov V. V., Kirillin M. Y., Dunaev A. V., Potapova E. V. Method for Assessing Local Metabolism of Mammary Tumors Based on Multimodal Optical Technology. J. of Oncology: Diagnostic Radiology and Radiotherapy. 2024, vol. 7, no, 2, pp. 37–45. doi: 10.37174/2587-7593-2024-7-2-37-45 (In Russ.)
16. Lukina M. M., Shimolina L. E., Kiselev N. M., Zagainov V. E., Komarov D. V., Zagaynova E. V., Shirmanova M. V. Interrogation of Tumor Metabolism in Tissue Samples Ex Vivo Using Fluorescence Lifetime Imaging of NAD(P)H. Methods and Applications in Fluorescence. 2019, vol. 8, no. 1, p. 14002. doi: 10.1088/2050-6120/ab4ed8
17. Lukina M. M., Dudenkova V. V., Ignatova N. I., Druzhkova I. N., Shimolina L. E., Zagaynova E. V., Shirmanova M. V. Metabolic Cofactors NAD(P)H and FAD as Potential Indicators of Cancer Cell Response to Chemotherapy with Paclitaxel. Biochimica et Biophysica Acta. General Subjects. 2018, vol. 1862, no. 8, pp. 1693–1700. doi: 10.1016/j.bbagen.2018.04.021
18. Awasthi K., Moriya D., Nakabayashi T., Li L., Ohta N. Sensitive Detection of Intracellular Environment of Normal and Cancer Cells by Autofluorescence Lifetime Imaging. J. of Photochemistry and Photobiology. B, Biology. 2016, vol. 165, pp. 256–265. doi: 10.1016/j.jphotobiol.2016.10.023
19. Palmer S., Litvinova K., Rafailov E. U., Nabi G. Detection of Urinary Bladder Cancer Cells Using Redox Ratio and Double Excitation Wavelengths Autofluorescence. Biomedical Optics Express. 2015, vol. 6, no. 3, pp. 977–986. doi: 10.1364/BOE.6.000977
20. Kandurova K., Dremin V., Zherebtsov E., Potapova E., Alyanov A., Mamoshin A., Ivanov Y., Borsukov A., Dunaev A. Fiber-Optic System for Intraoperative Study of Abdominal Organs during Minimally Invasive Surgical Interventions. Applied Sciences. 2019, vol. 9, no. 2, p. 217. doi: 10.3390/app9020217
21. Bird D. K., Yan L., Vrotsos K. M., Eliceiri K. W., Vaughan E. M., Keely P. J., White J. G., Ramanujam N. Metabolic Mapping of MCF10A Human Breast Cells Via Multiphoton Fluorescence Lifetime Imaging of the Coenzyme NADH. Cancer Research. 2005, vol. 65, no. 19, pp. 8766–8773. doi: 10.1158/0008-5472.CAN-04-3922
22. Suhling K., French P. M. W., Phillips D. TimeResolved Fluorescence Microscopy. Photochemical & Photobiological Sciences. 2005, vol. 4, no. 1, pp. 13– 22. doi: 10.1039/b412924p
23. Kittle D. S., Vasefi F., Patil C. G., Mamelak A., Black K. L., Butte, P. V. Real Time Optical Biopsy: Time-Resolved Fluorescence Spectroscopy Instrumentation and Validation. Scientific Reports. 2016, vol. 6, p. 38190. doi: 10.1038/srep38190
24. Mathieu M. C., Toullec A., Benoit C., Berry R., Validire P., Beaumel P., Vincent Y., Maroun P., Vielh P., Alchab L., Farcy R., Moniz-Koum H., FontaineAupart M. P., Delaloge S., Balleyguier C. Preclinical Ex Vivo Evaluation of the Diagnostic Performance of a New Device for in Situ Label-Free Fluorescence Spectral Analysis of Breast Masses. European Radiology. 2018, vol. 28, no. 6, pp. 2507–2515. doi: 10.1007/s00330-017-5228-7
25. de Boer L. L., Bydlon T. M., van Duijnhoven F., Vranken Peeters M. T. F. D., Loo C. E., Winter-Warnars G. A. O., Sanders J., Sterenborg H. J. C. M., Hendriks B. H. W., Ruers T. J. M. Towards the Use of Diffuse Reflectance Spectroscopy for Real-Time in Vivo Detection of Breast Cancer During Surgery. J. of Translational Medicine. 2018, vol. 16, no. 1, p. 367. doi: 10.1186/s12967-018-1747-5
26. Sharma V., Shivalingaiah S., Peng Y., Euhus D., Gryczynski Z., Liu H. Auto-Fluorescence Lifetime and Light Reflectance Spectroscopy for Breast Cancer Diagnosis: Potential Tools for Intraoperative Margin Detection. Biomedical Optics Express. 2012, vol. 3, no. 8, pp. 1825–1840. doi: 10.1364/BOE.3.001825
27. Gust L., Toullec A., Benoit C., Farcy R., Garcia S., Secq V., Gaubert J. Y., Trousse D., Orsini B., Doddoli C., Moniz-Koum H., Thomas P. A., D'journo X. B. Pulmonary Endogenous Fluorescence Allows the Distinction of Primary Lung Cancer from the Perilesional Lung Parenchyma. PloS one. 2015, vol. 10, no. 8, p. e0134559. doi: 10.1371/journal.pone.0134559
28. Braun F., Schalk R., Nachtmann M., Hien A., Frank R., Beuermann T., Methner F.-J., Kränzlin B., Rädle M., Gretz N. A Customized Multispectral Needle Probe Combined with a Virtual Photometric Setup for in Vivo Detection of Lewis Lung Carcinoma in an Animal Model. Measurement Science and Technology. 2019, vol. 30, no. 10, p. 104001. doi: 10.1088/1361-6501/ab24a1
29. Spliethoff J. W., Prevoo W., Meier M. A., de Jong J., Klomp H. M., Evers D. J., Sterenborg H. J., Lucassen G. W., Hendriks B. H., Ruers T. J. Real-Time In Vivo Tissue Characterization with Diffuse Reflectance Spectroscopy during Transthoracic Lung Biopsy: A Clinical Feasibility Study. Clinical Cancer Research: an Official J. of the American Association for Cancer Research. 2016, vol. 22, no. 2, pp. 357–365. doi: 10.1158/1078-0432.CCR-15-0807
30. Keller A., Bialecki P., Wilhelm T. J., Vetter M. K. Diffuse Reflectance Spectroscopy of Human Liver Tumor Specimens – Towards a Tissue Differentiating Optical Biopsy Needle Using Light Emitting Diodes. Biomedical Optics Express. 2018, vol. 9, no. 3, pp. 1069– 1081. doi: 10.1364/BOE.9.001069
31. Spliethoff J. W., Evers D. J., Jaspers J. E., Hendriks B. H., Rottenberg S., Ruers T. J. Monitoring of Tumor Response to Cisplatin Using Optical Spectroscopy. Translational Oncology. 2014, vol. 7, no. 2, pp. 230–239. doi: 10.1016/j.tranon.2014.02.009
32. Spliethoff J. W., de Boer L. L., Meier M. A., Prevoo W., de Jong J., Kuhlmann K., Bydlon T. M., Sterenborg H. J., Hendriks B. H., Ruers T. J. In Vivo Characterization of Colorectal Metastases in Human Liver Using Diffuse Reflectance Spectroscopy: Toward Guidance in Oncological Procedures. J. of Biomedical Optics. 2016, vol. 21, no. 9, p. 097004. doi: 10.1117/1.JBO.21.9.097004
33. Tanis E., Evers D. J., Spliethoff J. W., Pully V. V., Kuhlmann K., van Coevorden F., Hendriks B. H., Sanders J., Prevoo W., Ruers, T. J. In Vivo Tumor Identification of Colorectal Liver Metastases with Diffuse Reflectance and Fluorescence Spectroscopy. Lasers in Surgery and Medicine. 2016, vol. 48, no. 9, pp. 820–827. doi: 10.1002/lsm.22581
34. Zherebtsov E., Dremin V., Popov A., Doronin A., Kurakina D., Kirillin M., Meglinski I., Bykov A. Hyperspectral Imaging of Human Skin Aided by Artificial Neural Networks. Biomedical Optics Express. 2019, vol. 10, no. 7, pp. 3545–3559. doi: 10.1364/BOE.10.003545
35. Dremin V., Potapova E., Zherebtsov E., Kandurova K., Shupletsov V., Alekseyev A., Mamoshin A., Dunaev A. Optical Percutaneous Needle Biopsy of the Liver: a Pilot Animal and Clinical Study. Scientific Reports. 2020, vol. 10, no. 1, p. 14200. doi: 10.1038/s41598-020-71089-5
36. International Commission on Non-Ionizing Radiation Protection (ICNIRP). Guidelines on Limits of Exposure to Ultraviolet Radiation of Wavelengths between 180 nm and 400 nm (Incoherent Optical Radiation). Health Physics. 2004, vol. 87, no. 2. pp. 171–186. doi: 10.1097/00004032-200408000-00006
37. Zherebtsov E. A., Potapova E. V., Mamoshin A. V., Shupletsov V. V., Kandurova K. Y., Dremin V. V., Abramov A. Y., Dunaev A. V. Fluorescence Lifetime Needle Optical Biopsy Discriminates Hepatocellular Carcinoma. Biomedical Optics Express. 2022, vol. 13, no. 2, pp. 633–646. doi: 10.1364/BOE.447687
38. Potapova E. V., Zherebtsov E. A., Shupletsov V. V., Dremin V. V., Kandurova K. Y., Mamoshin A. V., Abramov A. Y., Dunaev A. V. Detection of NADH and NADPH Levels in Vivo Identifies Shift of Glucose Metabolism in Cancer to Energy Production. The FEBS J. 2024, vol. 291, no. 12, pp. 2674–2682. doi: 10.1111/febs.17067
39. Dezso K., Bugyik E., Papp V., László V., Döme B., Tóvári J., Tímár J., Nagy P., Paku S. Development of Arterial Blood Supply in Experimental Liver Metastases. The American J. of Pathology. 2009, vol. 175, no. 2, pp. 835–843. doi: 10.2353/ajpath.2009.090095
40. Skala M. C., Riching K. M., Bird D. K., GendronFitzpatrick A., Eickhoff J., Eliceiri K. W., Keely P. J., Ramanujam N. In Vivo Multiphoton Fluorescence Lifetime Imaging of Protein-Bound and Free Nicotinamide Adenine Dinucleotide in Normal and Precancerous Epithelia. J. of Biomedical Optics. 2007, vol. 12, no. 2, p. 024014. doi: 10.1117/1.2717503
Review
For citations:
Potapova E.V. Methods of Intraoperative Diagnosis in Puncture Minimally Invasive Surgery of Liver Cancer. Journal of the Russian Universities. Radioelectronics. 2024;27(6):106-119. (In Russ.) https://doi.org/10.32603/1993-8985-2024-27-6-106-119