Formation of Hierarchical Porous Nickel Oxide Nanoparticles by Green Synthesis
https://doi.org/10.32603/1993-8985-2024-27-6-55-67
Abstract
Introduction. Porous metal oxide nanoparticles are of great scientific and technological importance due to their wide range of applications. Such materials are obtained by co-deposition, sol-gel, microemulsion, hydrothermal, vapor-phase, etc., methods. Currently, porous metal oxide nanoparticles can be obtained by green synthesis from plant extracts.
Aim. Development of a scalable technique for obtaining porous nickel oxide nanoparticles with a high specific surface area. Investigation of the process of forming hierarchical porous nickel oxide nanoparticles by green synthesis.
Materials and methods. Nickel oxide nanoparticles were obtained by green synthesis using an extract of Fumaria officinalis, a medicinal plant. The chemical composition and surface microstructure were studied by X-ray phase analysis, scanning and transmission electron microscopy. The parameters of the resulting porous structure, such as specific surface area, volume, and pore size, were investigated by the methods of thermal desorption and BET.
Results. Large porous agglomerates ranging in size from several to tens of micrometers were obtained. It was shown that centrifugation rate can be used to vary the specific surface area of structures (up to values of Ssa = 130 m2 /g). Annealing temperature can also be used to manage the specific surface area of particles. When an optimal temperature is selected, an almost complete removal of organic ligands that stabilize nanoparticles can be achieved. A model for obtaining a developed porous structure by green synthesis is proposed.
Conclusion. Hierarchical porous nickel oxide nanoparticles were obtained by the method of green synthesis using a Fumaria officinalis extract. A technique for obtaining porous nickel oxide nanoparticles with a high specific surface area was developed. It is shown that technological parameters, such as centrifugation rate and annealing temperature, affect significantly the structure and specific surface area of porous nickel oxide nanoparticles. Systems made of porous nanoparticles are promising for use as catalysts, adsorbents, and electrodes, as well as magnetic and photovoltaic materials. Such aggregated nanoparticles are also promising for use in incorporated and encapsulated nanocomposites, and for creating specialized growth platforms.
About the Authors
K. KhalugarovaRussian Federation
Kamilya Khalugarova, Postgraduate student in "Electronics, Radio Engineering and Communication Systems", Junior Researcher of the Department of Micro- and Nanoelectronics
5 F, Professor Popov St., St Petersburg 197022
Yu. M. Spivak
Russian Federation
Yulia M. Spivak, Dr. Sci. (Eng.) (2022), Assistant Professor (2015), Assistant Professor of the Department of Micro- and Nanoelectronics
5 F, Professor Popov St., St Petersburg 197022
V. A. Moshnikov
Russian Federation
Vyacheslav A. Moshnikov, Dr Sci. (Phys.-Math.) (1997), Professor (1999), Professor of the Department of Micro- and Nanoelectronics; Honorary Worker of Higher Professional Education of the Russian Federation (2007)
5 F, Professor Popov St., St Petersburg 197022
References
1. Jose A., Mathew T., Fernández-Navas N., Querebillo C. J. Porous Inorganic Nanomaterials: Their Evolution towards Hierarchical Porous Nanostructures. Micro. 2024, vol. 4, no. 2, pp. 229–280. doi: 10.3390/micro4020016
2. Bhalothia D., Beniwal A., Saravanan P. K., Chen P.-C., Chen T.-Y. Bridging the Gap Between Single Atoms, Atomic Clusters and Nanoparticles in Electrocatalysis: Hierarchical Structured Heterogeneous Catalysts. ChemElectroChem. 2024, vol. 11, iss. 10, p. e202400034. doi: 10.1002/celc.202400034
3. Gerber I. C., Serp P. A Theory/Experience Description of Support Effects in Carbon-Supported Catalysts. Chemical Reviews. 2019, vol. 120, iss. 2, pp. 1250–1349. doi: 10.1021/acs.chemrev.9b00209
4. Moshnikov V. A., Gracheva I., Lenshin A. S., Spivak Yu. M., Anchkov M. G., Kuznetsov V. V., Olchowik J. M. Porous Silicon with Embedded Metal Oxides for Gas Sensing Applications. J. of Non-Crystalline Solids. 2012, vol. 358, iss. 3, pp. 590–595. doi: 10.1016/j.jnoncrysol.2011.10.017
5. Spivak Yu. M., Mjakin S. V., Moshnikov V. A., Panov M. F., Belorus A. O., Bobkov A. A. Surface Functionality Features of Porous Silicon Prepared and Treated in Different Conditions. J. of Nanomaterials. 2016, vol. 2016, iss. 1, p. 2629582. doi: 10.1155/2016/2629582
6. Mai H. D., Rafiq K., Yoo H. Nano Metal‐ Organic Framework‐Derived Inorganic Hybrid Nanomaterials: Synthetic Strategies and Applications. Chemistry–A European J. 2017, vol. 23, iss. 24, pp. 5631– 5651. doi: 10.1002/chem.201604703
7. Notario B., Pinto J., Rodriguez-Perez M. A. Nanoporous Polymeric Materials: A New Class of Materials with Enhanced Properties. Progress in Materials Science. 2016, vol. 78, pp. 93–139. doi: 10.1016/j.pmatsci.2016.02.002
8. Pal N. Nanoporous Metal Oxide Composite Materials: A Journey from the Past, Present to Future. Advances in Colloid and Interface Science. 2020, vol. 280, p. 102156. doi: 10.1016/j.cis.2020.102156
9. Carrettin S., Concepción P., Corma A., López Nieto J. M., Puntes V. F. Nanocrystalline CeO2 Increases the Activity of Au for CO Oxidation by Two Orders of Magnitude. Angewandte Chemie International Edition. 2004, vol. 43, iss. 19, pp. 2538–2540. doi: 10.1002/anie.200353570
10. Skandan G., Singhal A. Perspectives on the Science and Technology of Nanoparticle Synthesis. Nanomaterials handbook. 2006, pp. 13–28. doi: 10.1201/9781420004014.ch2
11. Gubanova N., Matveev V., Grebenshchikova E., Kirilenko D., Sazonova Y., Shilova O. Pt and Pd Nanoparticle Crystallization in the Sol-Gel-Derived Thin SiO2 Films. Physchem. 2023, vol. 3, iss. 2, pp. 259–269. doi: 10.3390/physchem3020018
12. Adelere I. A., Lateef A. A Novel Approach to the Green Synthesis of Metallic Nanoparticles: The Use of Agro-Wastes, Enzymes, and Pigments. Nanotechnology Reviews. 2016, vol. 5, iss. 6, pp. 567–587. doi: 10.1515/ntrev-2016-0024
13. Hussain I., Singh N. B., Singh A., Singh H., Singh S. C. Green Synthesis of Nanoparticles and Its Potential Application. Biotechnology Let. 2016, vol. 38, pp. 545–560. doi: 10.1007/s10529-015-2026-7
14. Yang X.-Y., Chen L.-H., Li Y., Rooke J. C., Sanchez C., Su B.-L. Hierarchically Porous Materials: Synthesis Strategies and Structure Design. Chemical Society Reviews. 2017, vol. 46, no. 2, pp. 481–558. doi: 10.1039/C6CS00829A
15. Bobkov A. A., Kononova I. E., Moshnikov V. A. Materialovedenie mikro- i nanosistem. Ierarkhicheskie struktury [Materials Science of Micro- and Nanosystems. Hierarchical Structures]. St Petersburg, izd-vo SPbGETU "LETI", 2017, 202 p. (In Russ.)
16. Wu L., Li Y., Fu Zh., Su B.-L. Hierarchically Structured Porous Materials: Synthesis Strategies and Applications in Energy Storage. National Science Review. 2020, vol. 7, iss. 11, pp. 1667–1701. doi: 10.1093/nsr/nwaa183
17. Chen L. H., Li Y., Su B. L. Hierarchy in Materials for Maximized Efficiency. National Science Review. 2020, vol. 7, iss. 11, pp. 1626–1630. doi: 10.1093/nsr/nwaa251
18. Zhou B., Cheng Q., Chen Z., Chen Z., Liang D., Munro E. A., Yun G., Kawai Y., Chen J., Bhowmick T., Kannan P. K., Occhipinti L. G., Matsumoto H., Gardner J. W., Su B.-L., Hasan T. Universal Murray’s Law for Optimised Fluid Transport in Synthetic Structures. Nature Communications. 2024, vol. 15, no. 1, art. no. 3652. doi: 10.1038/s41467-024-47833-0
19. Kononova I., Kononov P., Moshnikov V. Stepby-Step Modeling and Experimental Study on the Sol– Gel Porous Structure of Percolation Nanoclusters. Coatings. 2023, vol. 13, iss. 2, p. 449. doi: 10.3390/coatings13020449
20. Spivak Yu. M., Kononova I. E., Kononov P. V., Moshnikov V. A., Ignat’ev S. A. The Architectonics Features of Heterostructures for IR Range Detectors Based in Polycrystalline Layers of Lead Chalcogenides. Crystals. 2021, vol. 11, iss. 9, p. 1143. doi: 10.3390/cryst11091143
21. Maji S., Shrestha L. K., Ariga K. Nanoarchitectonics for Hierarchical Fullerene Nanomaterials. Nanomaterials. 2021, vol. 11, iss. 8, p. 2146. doi: 10.3390/nano11082146
22. Bobkov A., Luchinin V., Moshnikov V., Nalimova S., Spivak Yu. Impedance Spectroscopy of Hierarchical Porous Nanomaterials Based on Por-Si, Por-Si Incorporated by Ni and Metal Oxides for Gas Sensors. Sensors. 2022, vol. 22, iss. 4, p. 1530. doi: 10.3390/s22041530
23. Ariga K. Progress in Molecular Nanoarchitectonics and Materials Nanoarchitectonics. Molecules. 2021, vol. 26, iss. 6, p. 1621. doi: 10.3390/molecules26061621
24. Manjunath V., Bimli S., Singh D., Biswas R., Didwal P. N., Haldar K. K., Deshpande N. G., Bhobe P. A., Devan R. S. Porous Nanorods by Stacked NiO Nanoparticulate Exhibiting Corn-Like Structure for Sustainable Environmental and Energy Applications. RSC Advances. 2023, vol. 13, iss. 32, pp. 21962–21970. doi: 10.1039/D3RA03209D
25. Xing W., Li F., Yan Z., Lu G. Q. Synthesis and Electrochemical Properties of Mesoporous Nickel Oxide. J. of Power Sources. 2004, vol. 134, iss. 2, pp. 324– 330. doi: 10.1016/j.jpowsour.2004.03.038
26. Farhadi S., Kazem M., Siadatnasab F. NiO Nanoparticles Prepared via Thermal Decomposition of the Bis (Dimethylglyoximato) Nickel (II) Complex: A Novel Reusable Heterogeneous Catalyst for Fast and Efficient Microwave-Assisted Reduction of Nitroarenes With Ethanol. Polyhedron. 2011, vol. 30, iss. 4, pp. 606–613. doi: 10.1016/j.poly.2010.11.037
27. Wang D., Xu R., Wang X., Li Y. NiO Nanorings and Their Unexpected Catalytic Property for CO Oxidation. Nanotechnology. 2006, vol. 17, no. 4, p. 979. doi: 10.1088/0957-4484/17/4/023
28. Wu Z., Vagin M., Boyd R., Bakhit B., Greczynski G., Odén M., Björk E. M. Morphology Effects on Electrocatalysis of Anodic Water Splitting on Nickel (II) Oxide. Microporous and Mesoporous Materials. 2022, vol. 333, p. 111734. doi: 10.1016/j.micromeso.2022.111734
29. Pat. KR101635552B1 G01N27/3271. Nickel Oxide Nanostructures with High Surface Area and Its Application for Urease-based Biosensor. Publ. 01.07.2016.
30. Kundu M., Liu L. Electrospun Porous Nickel Oxide Nanofibers for High-Performance Electrochemical Energy Storage. J. Nanosci. Let. 2015, vol. 5, pp. 11–18.
31. Etefa H. F., Nemera D. J., Dejene F. B. Green Synthesis of Nickel Oxide NPs Incorporating Carbon Dots for Antimicrobial Activities. ACS Omega. 2023, vol. 8, iss. 41, pp. 38418–38425. doi: 10.1021/acsomega.3c05204
32. Ahmad B., Khan M. I., Naeem M. A., Alhodaib A., Fatima M., Amami M., Al-Abbad E. A., Kausar A., Alwadai N., Nazir A., Iqbal M. Green Synthesis of NiO Nanoparticles Using Aloe Vera Gel Extract and Evaluation of Antimicrobial Activity. Materials Chemistry and Physics. 2022, vol. 288, p. 126363. doi: 10.1016/j.matchemphys.2022.126363
33. Singh Y., Sodhi R. S., Singh P. P., Kaushal S. Biosynthesis of NiO Nanoparticles Using Spirogyra Sp. Cell-Free Extract and Their Potential Biological Applications. Materials Advances. 2022, vol. 3, iss. 12, pp. 4991–5000. doi: 10.1039/D2MA00114D
34. Mohammed M., Alkhazraji A. H. Synthesis and Characterization of Nickel Oxide Nanoparticles by Green as well as Chemical Routes and Comparisons their Properties. Iraqi J. of Natural Sciences and Nanotechnology. 2023, vol. 4, iss. 1, pp. 54–63. doi: 10.47758/ijn.v4i0.92
35. Obtaining Nickel Nanoparticles by Green Synthesis Method / K. Khalugarova, A. S. Komolov, Yu. M. Spivak, V. A. Moshnikov, V. M. Kondratev // Proc of the conf. "Microelectronics and Computer Science", Zelenograd, 20–21 Apr. 2023. Moscow, Natsional'nyi issledovatel'skii universitet "Moskovskii institut elektronnoi tekhniki", 2023, pp. 273–278. (In Russ.)
36. Khalugarova K., Kondratev V. M., Kuznetsov A., Gagarina A. Yu. Investigation of Particles Obtained by Green Synthesis Using Plant Extract. Seminar on Microelectronics, Dielectrics and Plasmas (MDP), St Petersburg, Russia, 20 Nov. 2023. IEEE, 2023, pp. 60–62. doi: 10.1109/MDP60436.2023.10424367
37. Maraeva E., Khalugarova K. Size Analysis Based on Sorption Study Data for Hydroxyapatite Nanoparticles. Materials Science Forum. 2021, vol. 1031, pp. 172–177. doi: 10.4028/www.scientific.net/MSF.1031.172
38. Khalugarova K. N., Maraeva E. V., Moshnikov V. A. Study on the Processes of Nitrogen Adsorption and Capillary Condensation in the Powders of Calcium Hydroxyapatite. J. of Physics: Conf. Ser. 2019, vol. 1400, iss. 3, p. 033003. doi: 10.1088/1742-6596/1400/3/033003
39. Everett D. H. Manual of Symbols and Terminology for Physicochemical Quantities and Units, Appendix II: Definitions, Terminology and Symbols in Colloid and Surface Chemistry. Pure and Applied Chemistry. 1972, vol. 31, pp. 577–638. doi: 10.1351/pac197231040577
40. Richardson J. T., Scates R., Twigg M. V. X-Ray Diffraction Study of Nickel Oxide Reduction by Hydrogen. Applied Catalysis A: General. 2003, vol. 246, iss. 1, pp. 137–150. doi: 10.1016/S0926-860X(02)00669-5
41. Kononova I. E., Moshnikov V. A., Kononov P. V. Modeling of Three-Dimensional Hierarchical Porous Materials Organized by Means of Nanosphere SelfAssembly. J. of the Russian Universities. Radioelectronics. 2017, no. 5, pp. 54–63. (In Russ.)
42. Moshnikov V. A., Tairov Yu. M., Khamova T. V., Shilova O. A. Sol-Gel Technology of Micro- and Nanocomposites. SPb, Izd. "Lan", 2013, 304 p. (In Russ.)
43. Xue X., Penn R. L., Leite E. R., Huanga F., Lin Z. Crystal Growth by Oriented Attachment: Kinetic Models and Control Factors. CrystEngComm. 2014, vol. 16, iss. 8, p. 1419–1429. doi: 10.1039/C3CE42129E
Review
For citations:
Khalugarova K., Spivak Yu.M., Moshnikov V.A. Formation of Hierarchical Porous Nickel Oxide Nanoparticles by Green Synthesis. Journal of the Russian Universities. Radioelectronics. 2024;27(6):55-67. (In Russ.) https://doi.org/10.32603/1993-8985-2024-27-6-55-67