Preview

Journal of the Russian Universities. Radioelectronics

Advanced search

Operation Evaluation of Phased Antenna Arrays in Case of Phase Shifter Malfunction

https://doi.org/10.32603/1993-8985-2024-27-6-20-29

Abstract

Introduction. Stable operation of multi-element antenna systems, in particular waveguide-slotted phased antenna arrays (WSPAA), ensures the required noise immunity and electromagnetic compatibility of radio-electronic equipment for various purposes. However, such performance indicators are subject to deterioration due to the random nature of changes in the phases of antenna elements (AE) under the action of malfunction of phase shifters (PS). Therefore, operation evaluation of WSPAAs in the event of PS failure with any outcome is an urgent research task. The paper reviews algorithms for modeling the impact of PS failures on WSPAAs and evaluates the operation of such antenna systems under these impacts.

Aim. Development of an algorithm for assessing the impact of a complete PS shutdown on WSPAA characteristics, as well as operation evaluation of WSPAAs in the event of PS malfunction with different outcomes.

Materials and methods. Statistical modeling methods were used to study the impact of PS failures on WSPAA characteristics. Calculations were carried out using in the Mathcad 15 software environment.

Results. The conducted simulation revealed three types of faults, for which the following PS parameters were set: the phase took a value equal to 0, instead of the required one; the phase took a random value with a discrete value of 22.5°, instead of the required one; complete switching off of the PS. When studying up to 35 faulty PS of an AE from 50 elements, the following characteristics were changed: standard deviation – from 0.056 to 0.18; relative values: radiation pattern width – from 8 to 32 %; level of side lobes – from 13 to 78 %; radiation power – from 0.9 to 0.31. A range of WSPAA states was formed upon the occurrence of PS failures: "Normal operation" – up to 7 faulty PS; "Deterioration of parameters" – from 7 to 12 faulty PS; "Failure" – more than 12 faulty PS.

Conclusion. The results obtained can be used when designing radio-electronic systems with antenna arrays. Future research should be aimed at developing a methodology for operational monitoring of the state of antenna systems, as well as studying the compensation of characteristic distortions in case of various malfunctions.

About the Authors

M. R. Bibarsov
Saint Petersburg State University of Aerospace Instrumentation; Military Telecommunications Academy
Russian Federation

Marat R. Bibarsov, Cand. Sci. (Eng.) (1999), Associate Professor (2007), Senior Lecturer of the Radio Communications Department; Associate Professor of the Department of Radio-engineering and Optoelectronic Complexes

3, Tikhoretsky Ave., St Petersburg 194064



A. F. Kryachko
Saint Petersburg State University of Aerospace Instrumentation
Russian Federation

Alexander F. Kryachko, Dr Sci. (Eng.) (2005), Professor (2008), Head of the Department of Radioengineering and Optoelectronic Complexes



A. V. Pshenichnikov
Military Telecommunications Academy
Russian Federation

Alexander V. Pshenichnikov, Dr Sci. (Eng.) (2018), Professor (2022), Head of the Department of the Radio Communication Department

3, Tikhoretsky Ave., St Petersburg 194064



References

1. Voskresensky D. I., Gostyukhin V. L., Maksimov V. M., Ponomarev L. I. Ustrojstva SVCh i antenny [Microwave Devices and Antennas]. Ed. by D. I. Voskresensky. 2nd ed. Moscow, Radiotehnika, 2006, 376 p. (In Russ.)

2. Voskresensky D. I., Kotov Yu. V., Ovchinnikova E. V. Trends in the Development of Broadband Phased Antenna Arrays (review of works). Antenna. 2005, no. 11 (102), pp. 7–21. (In Russ.)

3. Grigoriev L. N. Cifrovoe formirovanie diagrammy napravlennosti v fazirovannyh antennyh reshetkah [Digital Beamforming in Phased Antenna Arrays]. Moscow, Radiotehnika, 2010, 144 p. (In Russ.)

4. Hansen R. S. Phased Antenna Arrays. 2nd ed. New Jersey, John Willey & Sons, 2009, 551 p.

5. Balanis C. A. Antenna Theory: Analysis and Design. 3rd ed. New Jersey, John Willey & Sons, 2005, 1136 p.

6. Manuilov M. B., Lerer V. A., Sinyavsky G. P. Methods of Simulation and New Design Concepts of Slotted-Waveguide Array Antennas. Advances of Modern Radio Electronics. 2007, no. 5, pp. 3–28. (In Russ.)

7. Koshkidko V. G., Migalin M. M. Design and Investigation of a Linear Equidistant Slotted Waveguide Antenna. Antennas. 2018, no. 2, pp. 15–20. (In Russ.)

8. Milligan T. A. Modern Antenna Design. New Jersey, John Wiley & Sons, 2005, 630 p.

9. Levin B. Antenna Engineering Theory and Problems. Boca Raton, CRC Press, 2017, 406 p.

10. Pelevin A. O., Zargano G. V., Vyatkina S. V. Comparative Analysis of Radiation Patterns of Phased Arrays of Slotted Rectangular and Single-Ridge Waveguide Antennas. Telecommunications. 2019, no. 3, pp. 22–28. (In Russ.)

11. Rui Xu, Jiangying Li, Dingyi Luo, Guangwei Yang. Single Ridge Waveguide Slot Incremental Conductance Analysis and Array Antenna Design. Proc. of 2014 3rd Asia-Pacific Conf. on Antennas and Propagation, Harbin, China, 26–29 July 2014. IEEE, 2014, pp. 143–146. doi: 10.1109/APCAP.2014.6992435

12. Teng Li, Wenbin Dou. Design of an Edge Slotted Waveguide Antenna Array Based on TShaped Cross-Section Waveguide. Intern. J. of Antennas and Propagation. 2017, pp. 1–8. doi: 10.1155/2017/7385357

13. Elliott R. S. Antenna Theory & Design. WileyIEEE Press, 2003, 612 p.

14. Gabriel’ean D. D., Korovkin A. E., Boychuk S. I., Dvornikov S. V., Bibarsov M. R., Bibarsova G. Sh. Mathematical Model of an Antenna-Waveguide Path with Separation of Signals by Frequency–Polarization. J. of the Russian Universities. Radioelectronics. 2022, vol. 25, no. 4, pp. 41–51. doi: 10.32603/1993-8985-2021-25-4-41-51 (In Russ.)

15. Ponomarev L. I., Stepanenko V. I. Skaniruyushchie mnogochastotnye sovmeshchennye antennye reshetki [Scanning Multi-Frequency Combined Antenna Arrays]. Moscow, Radio engineering, 2009, 328 p. (In Russ.)

16. Vendik O. G. Parnes M. D. [Antenny s elektricheskim skanirovaniem] Antennas with Electrical Scanning. Moscow, Science Press, 2001, 232 p. (In Russ.)

17. Bozzi M., Georgiadis A., Wu K. Review of Substrate Integrated Waveguide (SIW) Circuits and Antennas. IET Microwaves, Antennas and Propagation. 2011, vol. 5, no. 8, pp. 909–920. doi: 10.1049/iet-map.2010.0463

18. Pasternak Yu. G. Development of an Antenna Array for a Mobile Satellite Communication Terminal. Available at: https://cchgeu.ru/upload/iblock/211/itogovyy-otchet-poproektu-razrabotka-antennay-reshetki-dlya-mobilnogoterminala-sputnikovoy-svyazi.pdf (accessed 06.05.2024).

19. Proakis J. Digital Communication. New York, McGraw-Hill, 2000, 905 p.

20. Manaenko S. S., Dvornikov S. V., Pshenichnikov A. V. Theoretical Aspects in Forming Complex Structure Signal. Informatics and Automation. 2022, vol. 21, no. 1, pp. 68–94. doi: 10.15622/ia.2022.21.3

21. Rusin A. A., Bibarsov M. R., Ayukov B. A., Gordienko D. Yu., Lyashchenko S. A., Dvornikov S. V., Ustinov A. A. Analysis of Immunity Losses Under Slow Fading. Radio Electronics Issues. The TV Technique Series. 2022, no. 1, pp. 81–85. (In Russ.)

22. Dvornikov S. V., Pshenichnikov A. V., Kryachko A. F., Bibarsov M. R., Bibarsova G. Sh. Theoretical Proposals for Improving the Noise Immunity of Receiving MultiPosition Signals in Channels with Variable Parameters. J. of the Russian Universities. Radioelectronics. 2023, vol. 26, no. 2, pp. 6–15. doi: 10.32603/1993-8985-2023-26-2-6-15 (In Russ.)

23. Bibarsov M. R., Dvornikov S. V., Kryachko A. F., Pshenichnikov A. V. Scientific and Technical Proposals for Improving the Noise Immunity of Receiving MultiPosition Signals in Channels with Variable Parameters. J. of the Russian Universities. Radioelectronics. 2023, vol. 26, no. 2, pp. 6–15. doi: 10.32603/1993-8985-2023-26-6-6-15 (In Russ.)

24. Shifrin Y. S. [Voprosy statisticheskoi teorii antenn] Questions of statistical theory of antennas. Moscow, Sov. radio, 1970, 384 p. (In Russ.)

25. Bibarsov M. R., Gribanov E. V., Gabrielyan D. D., Fedorov Den. S., Fedorov Dan. S. Synthesis of Amplitude-Phase Distribution in Quasiconcave an Antenna Array. J. of the Russian Universities. Radioelectronics. 2017, iss. 2. pp. 28–33. (In Russ.)

26. Bibarsov M. R., Bibarsova G. Sh., Gabriel’ean D. D., Dvornikov S. V., Fedorov D. S. Effect of Locally Flat Distortions in the Radiating Aperture on the Radiation Pattern of a Phased Antenna Array. J. of the Russian Universities. Radioelectronics. 2023, vol. 26, no. 1, pp. 17–25. doi: 10.32603/1993-8985-2023-26-1-17-25 (In Russ.)

27. Bibarsov M. R., Bibarsova G. Sh., Gabrielyan D. D. Shatsky V. N. Influence of Errors in the Formation of the Amplitude-Phase Distribution in the Aperture of a Phased Array Antenna on the Accuracy of Direction Finding. Information and Space. 2023, no. 2, pp. 18– 23.

28. Bibarsov M. R. Research into the Impact of Phase Shifter Failures on the Characteristics of Slotted Waveguide Array Antenna. J. of the Russian Universities. Radioelectronics. 2024, vol. 27, no. 1. pp. 57–66. doi: 10.32603/1993-8985-2024-27-1-57-66 (In Russ.)

29. Kryachko A. F., Gladkiy N. A., Bibarsov M. R., Ayukov B. A. Algorithm for Assessing the Characteristics of a Waveguide Slot Antenna Array when Changing Antenna Element Phasing. J. of the Russian Universities. Radioelectronics. 2024, vol. 27, no. 3, pp. 42–51. doi: 10.32603/1993-8985-2024-27-3-42-51 (In Russ.)

30. Kryachko A. F., Bibarsov M. R., Ayukov B. A. Algorithm for Modeling Changes in the Characteristics of a Waveguide-Slot Antenna Array in Case of Phase Shifter Failures. Proc. of the Intern. Symp. "Reliability and Quality", Penza, 27 May – 1 June 2024. Penza State University, 2024, vol. 2, pp. 472–474. (In Russ.)


Review

For citations:


Bibarsov M.R., Kryachko A.F., Pshenichnikov A.V. Operation Evaluation of Phased Antenna Arrays in Case of Phase Shifter Malfunction. Journal of the Russian Universities. Radioelectronics. 2024;27(6):20-29. (In Russ.) https://doi.org/10.32603/1993-8985-2024-27-6-20-29

Views: 143


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1993-8985 (Print)
ISSN 2658-4794 (Online)