Calculation of the Effective Dielectric Constant and Capacitance of Slit and Plane-Parallel Capacitors with High Temperature Stability Characteristics Based on a Multilayer Ferroelectric Structure
https://doi.org/10.32603/1993-8985-2024-27-6-6-19
Abstract
Introduction. The creation of a modern electronic component base with improved characteristics is possible with the use of new materials and technologies for their manufacture. Therefore, it is important to analyze the electrical parameters of electronic components when using materials in their design that expand their functionality. Stabilization of the electrical properties of capacitors with variable capacitance when the control voltage changes due to temperature influences is an urgent task. Its solution can be performed using a set of nonlinear dielectrics, the properties of which mutually compensate for the instability of the capacitance over a wide temperature range.
Aim. Creation of computational models of planar slit structures containing multilayer films with thickness-variable stoichiometric compositions of ferroelectric materials. Based on such structures, it becomes possible to design capacitors whose capacitance varies from the control voltage and which can be used as concentrated circuit elements operating in the low–frequency - microwave wavelength ranges and having high temperature stability.
Materials and methods. Computational mathematical models for the analysis of layered structures are performed using the method of conformal maps and the use of boundary conditions for tangential and normal components of the electric field.
Results. The capacitance of slit and plane-parallel capacitors on multilayer structures is analyzed. The results of calculating the capacitance of capacitors from the number of ferroelectric layers and their thicknesses with various stoichiometric compositions providing the required stability in a given temperature range are obtained. Increasing the number of layers in the structure from three to five expands the temperature range of stabilization of the effective dielectric constant of the tank from ~50 °C to ~120…160 °C.
Conclusion. The created mathematical models made it possible to numerically evaluate the temperature and field stability of multilayer film structures based on barium strontium compositions for their use as a basis for constructing a component base with electrical capacity adjustment.
About the Authors
I. G. MironenkoRussian Federation
Igor G. Mironenko, Dr Sci. (Eng.) (1979), Professor (1981) of the Department of Microradioelectronics and Radio Equipment Technology
5 F, Professor Popov St., St Petersburg 197022
S. S. Sokolov
Russian Federation
Sergey S. Sokolov, Dr Sci. (Eng.) (1993), Professor (1995) of the Department of Microradioelectronics and Radio Equipment Technology
5 F, Professor Popov St., St Petersburg 197022
M. E. Shevchenko
Russian Federation
Maya E. Shevchenko, Cand. Sci. (Eng.) (1997), Associate Professor (2002) of the Department of Radio Electronics Equipment
5, Professor Popov St., St Petersburg 197002
V. S. Severikov
Russian Federation
Vasily S. Severikov, Master in Technical Physics (2019); Postgraduate student of the Department of Microradioelectronics and Radio Equipment Technology
5 F, Professor Popov St., St Petersburg 197022
Kong Che Fam
Russian Federation
Fam Kong Che, Master in Radioelectronic systems (2016); Postgraduate student of the Department of Microradioelectronics and Radio Equipment Technology
5 F, Professor Popov St., St Petersburg 197022
A. I. Protchenko
Russian Federation
Artemy I. Protchenko, engineer in Materials Science and Technologies of New Materials (2000); Deputy Director General for State Equipment Order
25, build. 3, let. B, Tsvetochnaya St., St Petersburg 196006
N. N. Sharova
Russian Federation
Natalia N. Sharova, Engineer in Applied Mathematics and Computer Science (1997); Deputy General Director
25, build. 3, let. B, Tsvetochnaya St., St Petersburg 196006
A. P. Burovikhin
Russian Federation
Anton P. Burovikhin, engineer of the Laboratory of Technology of Materials and Elements of Integrated Radiophotonics
5 F, Professor Popov St., St Petersburg 197022
A. A. Ivanov
Russian Federation
Arkady A. Ivanov, Dr Sci. (2018), Professor (2020) of the Department of Microradioelectronics and Radio Equipment Technology
5 F, Professor Popov St., St Petersburg 197022
References
1. Antonov N. N., Buzin I. M., Vendik O. G. Segnetoelektriki v tekhnike SVCh [Ferroelectrics in Microwave Technology]. Ed. by O. G. Vendik. Moscow, Soviet Radio, 1979, 272 p. (In Russ.)
2. Verbitskaya T. N., Alexandrova L. M., Shirobokova E. I. Electrical Properties of Film Variconds with a Rectangular Hysteresis Loop. Bulletin of the Russian Academy of Sciences: Physics. 1965, vol. 29, p. 2104. (In Russ.)
3. Vendik O. G., Zubko S. P., Gashinova M. S., Nekrasova N. Yu. SVCh-svoistva segnetoelektricheskikh plenok s razmytym fazovym perekhodom [Microwave Properties of Ferroelectric Films with a Blurred Phase Transition]. J. of the Russian Universities. Radioelectronics. 2005, iss. 1, pp. 15–19. (In Russ.)
4. Verbitskaya T. N. Titanat bariya [Barium Titanate]. Moscow, Nauka, 1973, 273 p. (In Russ.)
5. Gol'tsman B. M., Lemanov V. V., Dedyk A. I., Ter-Martirosyan L. T., Karmanenko S. F. Electrical Properties of a Thin Layer of SrTiO3 and Sr0.5 Ba0.5TiO3. Physics of the Solid State, 1996, vol. 38, iss. 8, pp. 2493–2496. (In Russ.)
6. Balashov V. M., Mironenko I. G., Ivanov A. A., Firsenkov A. I., Velkin D. V., Yakovlev O. V., Emelyanov N. A. Technology and Dielectric Properties of Nanocomposite Multilayer Ferroelectric Films. Questions of Radio Electronics. 2018, no. 1, pp. 62–67. (In Russ.)
7. Mukhortov Vas. M., Masychev S. I., Golovko Yu. I., Chub A. V., Mukhortov V. M. Application of Nanoscale Films of Barium-Strontium Titanate for Tunable Ultrahigh Frequency Devices. Teсhnical Physics. 2006, vol. 76, iss. 10, pp. 106–109. (In Russ.)
8. Kozyrev A., Ivanov A., Soldatenkov O., Golman E., Prudan A., Loginov V. Microwave Phase Shifter with Planar Capacitors Based on Strontium Titanate Films. Technical Physics Let. 1999, vol. 25, iss. 20, pp. 78-83. (In Russ.)
9. Jaemo Im., Auciello O., Baumann P. K., Streiffer S. K., Kaufman D., Krauss A. R. Compositioncontrol of Magnetron-Sputter-Deposited (BaxSr1-x)TiO3 Thin Films for Voltage Tunable Devices. Appl. Phys. Let. 2000, vol. 76, pp. 625–627. doi: 10.1063/1.125839
10. Cole M. W., Ngo E., Hirsch S., Demaree J. D., Zhong S., Alpay S. P. The Fabrication and Material Properties of Compositionally Multilayered Ba1-xSrxTiO3 thin Films for Realization of Temperature Insensitive Tunable Phase Shifter Devices. J. Appl. Phys. 2007, vol. 102, p. 034104. doi: 10.1063/1.2761849
11. Ivanov A. A., Mironenko, I. G., Karmanenko S. F., Semenov A. A., Nazarov I. A. Segnetoelektricheskie plenki i ustroistva na sverkh- i kraine vysokikh chastotakh [Ferroelectric Films and Devices at Ultra- and Extremely High Frequencies]. St Petersburg, Elmore, 2007, 162 p. (In Russ.)
12. Markushevich A. I. Kratkii kurs teorii analiticheskikh funktsii [A Short Course in the Theory of Analytical Functions]. 4th ed. Moscow, Nauka, 1978, 416 p. (In Russ.)
13. Lavpentyev M. A., Khabat B. V. Metody teorii funktsii kompleksnogo peremennogo [Methods of Theoretical Analysis]. Moscow, Nauka, 1973, 736 p. (In Russ.)
14. Lavrentiev M. A. Konformnye otobrazheniya [Official Images]. Moscow; Leningrad, Gosizdat, 1946, 160 p. (In Russ.)
15. Vendik O. G., Zubko S. P., Karmanenko S. F., Nikol’ski M. A., Isakov N. N., Serenkov I. T., Sakharov V. I. Layered Planar Capacitor Based on BaxSr1-xTiO3 with Variable Parameter x. J. Appl. Phys. 2002, vol. 91, no. 1, pp. 331–335. doi: 10.1063/1.1421035
Review
For citations:
Mironenko I.G., Sokolov S.S., Shevchenko M.E., Severikov V.S., Fam K.Ch., Protchenko A.I., Sharova N.N., Burovikhin A.P., Ivanov A.A. Calculation of the Effective Dielectric Constant and Capacitance of Slit and Plane-Parallel Capacitors with High Temperature Stability Characteristics Based on a Multilayer Ferroelectric Structure. Journal of the Russian Universities. Radioelectronics. 2024;27(6):6-19. (In Russ.) https://doi.org/10.32603/1993-8985-2024-27-6-6-19