Preview

Journal of the Russian Universities. Radioelectronics

Advanced search

Mutual Synchronization of Spintronic Nano-Oscillator Ensembles

https://doi.org/10.32603/1993-8985-2024-27-5-65-76

Abstract

Introduction. The use of spintronic components significantly enhances the performance, reduces the size, and lowers the power consumption of modern electronic devices. The spintronic oscillator (SO) is an integral part of spintronic devices. Connecting several SOs (> 100) into ensembles with subsequent synchronization mitigates such SO drawbacks as low output power and high phase noise. These drawbacks appear as a result of an increase in the output power of an SO ensemble compared to a single oscillator under a simultaneous decrease in the spectral linewidth of the ensemble.

Aim. To investigate the impact of connection topologies, synchronization mechanisms, and oscillator failures on the synchronization of oscillator ensembles.

Materials and methods. The Kuramoto phase model was used to simplify the numerical modeling of synchronization of SOs connected into an ensemble.

Results. A Kuramoto equation for phases of SOs connected in an ensemble was derived, and the influence of connection topologies and oscillator failures on the synchronization parameters of an ensemble of N connected oscillators was demonstrated.

Conclusion. In order to ensure the shortest transition time of an SO ensemble to the synchronous mode, topologies with a higher number of connections between oscillators (e.g., "all-to-all") are preferable. The results obtained confirm the advantages of local connection of an SO ensemble by a common current, thus forming an "all-to-all" topology. This makes the transition time of the SO ensemble to the synchronous mode less dependent on both oscillator failures and the number of synchronized SOs.

About the Authors

L. A. Tsyrulnikova
National Research University "Moscow Power Engineering Institute"; Kotelnikov Institute of Radioengineering and Electronics of Russian Academy of Sciences
Russian Federation

Ludmila A. Tsyrulnikova - engineer in "Radio Engineering" (2020, National Research University "Moscow Power Engineering Institute"), assistant at the Department of Radio Signal Formation and Processing of the named university, engineer of Kotelnikov Institute of Radioengineering and Electronics of Russian Academy of Sciences.

14, Krasnokazarmennaya St., Moscow 111250



D. A. Frolov
National Research University "Moscow Power Engineering Institute"
Russian Federation

Daniil A. Frolov - Cand. Sci. (Eng.) (2021), Associate Professor of National Research University "Moscow Power Engineering Institute".

14, Krasnokazarmennaya St., Moscow 111250



A. R. Safin
National Research University "Moscow Power Engineering Institute"; Kotelnikov Institute of Radioengineering and Electronics of Russian Academy of Sciences
Russian Federation

Ansar R. Safin - Dr Sci. (Phys.-Math.) (2023), Associate Professor, Deputy Director for Research of Kotelnikov Institute of Radioengineering and Electronics of Russian Academy of Sciences, Professor of the Department of Radio Signal Generation and Processing of National Research University "Moscow Power Engineering Institute". Head of the Department of Radiocomp LLC.

11, Mokhovaya St., Moscow 125009



References

1. Fert A. Origin, Development, and Prospects of Spintronics. Uspekhi Fizicheskih Nauk. 2008, vol. 178, no. 12, pp. 1336–1348. doi: 10.3367/UFNr.0178.200812f.1336

2. Zahedinejad M., Mazraati H., Fulara H., Yue J., Jiang S., Awad A., Åkerman J. CMOS Compatible W/CoFeB/MgO Spin Hall Nano-Oscillators with Wide Frequency Tunability. Applied Physics Let. 2018, vol. 112, no. 13, p. 132404. doi: 10.1063/1.5020260

3. Kiselev S. I., Sankey J. C., Krivorotov I. N., Emley N. C., Schoelkopf R. J., Buhrman R. A., Ralph D. C. Microwave Oscillations of a Nanomagnet Driven by a Spin-Polarized Current. Nature. 2003, vol. 425, no. 6956, pp. 380–383. doi: 10.1038/nature01967

4. Ralph D. C., Stiles M. D. Spin Transfer Torques. J. of Magnetism and Magnetic Materials. 2008, vol. 320, no. 7, pp. 1190–1216. doi: 10.1016/j.jmmm.2007.12.019

5. Moodera J. S., Kinder L. R., Wong T. M., Meservey R. Magnetoresistive Random Access Memory. Physical Review Let. 1995, vol. 74, no. 16, pp. 3273–3276.

6. Haas O., Dufay B., Saez S., Dolabdjian C. Sensitivity and Noise of a Magnetic Field Sensor Based on Magnetostatic Spin Wave YIG Device and Its Integrated Electronics. IEEE Sensors J. 2020, vol. 20, no. 23, pp. 14289–14296. doi: 10.1109/JSEN.2020.3008555

7. Mitrofanov A. A., Safin A. R., Udalov N. N. Phase Synchronization System of a Spin-Transfer Nano-Oscillator. Technical Physics Let. 2014, vol. 40, iss. 13, pp. 66–72. (In Russ.)

8. Mitrofanov A. A., Safin A. R., Udalov N. N., Kapranov M. V. Theory of Spin Torque Nano-OscillatorBased Phase-Locked Loop. J. of Applied Physics. 2017, vol. 122, no. 12, p. 123903. doi: 10.1063/1.4997160

9. Mitrofanov A., Safin A., Udalov N. Phase Locked Loop of the Spin-Torque Nanooscillator. Technical Physics Let. 2014, vol. 40, pp. 571–573. doi: 10.1134/S1063785014070074

10. González V. H., Litvinenko A., Kumar, Khymyn A. R., Åkerman J. Spintronic Devices as NextGeneration Computation Accelerators. Current Opinion in Solid State and Materials Science. 2024, vol. 28, no. 1, art. no. 101173. doi: 10.1016/j.cossms.2024.101173

11. Zahedinejad M., Awad A. A., Muralidhar S., Khymyn R., Fulara H., Mazraati H., Dvornik M., Åkerman J. Two-Dimensional Mutually Synchronized Spin Hall Nano-Oscillator Arrays for Neuromorphic Computing. Nature Nanotechnology. 2020, vol. 15, no. 1, pp. 47–52. doi: 10.1038/s41565-019-0593-9

12. Belanovsky A. D., Locatelli N., Skirdkov P. N., Abreu Araujo F., Grollier J., Zvezdin K. A., Cros V., Zvezdin A. K. Phase Locking Dynamics of Dipolarly Coupled Vortex-Based Spin Transfer Oscillators. Physical Review B. 2012, vol. 85, no. 10, p. 100409. doi: 10.1103/PhysRevB.85.100409

13. Kaka S., Pufall M. R., Rippard W. H., Silva T. J., Russek S. E., Katine J. A. Mutual Phase-Locking of Microwave Spin Torque Nano-Oscillators. Nature. 2005, vol. 437, no. 7057, pp. 389–392. doi: 10.1038/nature04035

14. Grollier J., Cros V., Fert A. Synchronization of Spin-Transfer Oscillators Driven by Stimulated Microwave Currents. Physical Review B. 2006, vol. 73, no. 6, p. 060409. doi: 10.1103/PhysRevB.73.060409

15. Taniguchi T. Synchronization of Spin Torque Oscillators through Spin Hall Magnetoresistance. IEEE Transactions on Magnetics. 2017, vol. 53, no. 11, pp. 1–7, art. no. 3400907. doi: 10.1109/TMAG.2017.2704588

16. Georges B., Grollier J., Cros V., Fert A., Khvalkovskiy A. V., Zvezdin K. A. Impact of the Electrical Connection of Spin Transfer Nano-Oscillators on Their Synchronization: an Analytical Study. Applied Physics Let. 2008, vol. 92, no. 23, p. 232504. doi: 10.1063/1.2945636

17. Sharma R., Mishra R., Ngo T., Guo Y. X., Fukami S., Sato H., Ohno H., Yang H. Electrically Connected Spin-Torque Oscillators Array for 2.4 GHz WiFi Band Transmission and Energy Harvesting. Nature Communications. 2021, vol. 12, no. 1, art. no. 2924. doi: 10.1038/s41467-021-23181-1

18. Zahedinejad M., Awad A. A., Muralidhar S., Khymyn R., Fulara H., Mazraati H., Dvornik M., Åkerman J. Two-Dimensional Mutual Synchronization in Spin Hall Nano-Oscillator Arrays. Nature Nanotechnology. 2020, vol. 15, no. 1, pp. 47–52. doi: 10.1038/s41565-019-0593-9

19. Arenas A., Díaz-Guilera A., Kurths J., Moreno Y., Zhou C. Synchronization in Complex Networks. Physics Reports. 2008, vol. 469, no. 3, pp. 93–153. doi: 10.1016/j.physrep.2008.09.002

20. Coletta T., Delabays R., Jacquod P. Finite-Size Scaling in the Kuramoto Model. Physical Review E. 2017, vol. 95, no. 4, p. 042207. doi: 10.1103/ PhysRevE.95.042207

21. Slavin A., Tiberkevich V. Excitation of Spin Waves by Spin-Polarized Current in Magnetic NanoStructures. IEEE Transactions on Magnetics. 2008, vol. 44, pp. 1916–1927. doi: 10.1109/TMAG.2008.924537

22. Kuramoto Y. Self-Entrainment of a Population of Coupled Nonlinear Oscillators. Intern. Symp. on Mathematical Problems in Theoretical Physics. Lecture Notes in Physics. 1975, vol. 39, pp. 420–422. doi: 10.1007/BFb0013365

23. Slavin A., Tiberkevich V. Nonlinear AutoOscillator Theory of Microwave Generation by Spin-Polarized Current. IEEE Transactions on Magnetics. 2009, vol. 45, no. 4, pp. 1875–1918. doi: 10.1109/TMAG.2008.2009935

24. Tsyrulnikova L. A., Safin A. R. Mutually Synchronized Spin Hall Nano-Oscillators by a Common Current. Proc. of the Samarkand Intern. Symp. on Magnetism, Samarkand, Uzbekistan, 2–6 July 2023. P. 57.


Review

For citations:


Tsyrulnikova L.A., Frolov D.A., Safin A.R. Mutual Synchronization of Spintronic Nano-Oscillator Ensembles. Journal of the Russian Universities. Radioelectronics. 2024;27(5):65-76. (In Russ.) https://doi.org/10.32603/1993-8985-2024-27-5-65-76

Views: 158


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1993-8985 (Print)
ISSN 2658-4794 (Online)