Influence of Barrier Width on QWIP Operating Voltage
https://doi.org/10.32603/1993-8985-2024-27-4-72-80
Abstract
Introduction. Quantum well infrared photodetectors (QWIP) are characterized by a wide application range. A large market demand for such photodetectors determines the importance of elucidating the principle of their operation.
Aim. To carry out a research study into the influence of the AlGaAs potential barrier surrounding GaAs quantum wells on the QWIP operating bias voltage in the long-wavelength region of the spectrum (8…10 μm).
Materials and methods. QWIP experimental samples were manufactured based on the GaAs/AlGaAs semiconductor material system using molecular beam epitaxy. The photosensitive (active) region of the structures contained 50 GaAs quantum wells with a thickness of 50 Å thick separated by AlGaAs barriers. Quantum wells were doped in situ with silicon as a donor impurity. The wavelength of the maximum spectral sensitivity of all samples ranged within 8…9 μm. The barrier width was the variable parameter. After passing the planar modification process route, the current–voltage characteristics were measured in all structures.
Results. Reduction in the barrier thickness is capable of shifting the peak of photosensitivity towards the region of lower bias voltages with a slight increase in the dark current values.
Conclusion. The study of the influence of the applied bias voltage presents both scientific and practical interest. On the one hand, the results improve the current understanding of the behavior of the dark current in QWIP. On the other, they provide the possibility of managing the maximum current sensitivity, shifting it towards the region of the required operating voltages of the multiplexers.
About the Authors
L. S. BogoslovskayaRussian Federation
Lana S. Bogoslovskaya – Postgraduate Student; Engineer, End-to-end technologist in the QWIP direction,
27, Engelsa Ave., St Petersburg 194156.
A. L. Dudin
Russian Federation
Anatoliy L. Dudin – Chief Technologist,
27, Engelsa Ave., St Petersburg 194156.
V. I. Zybkov
Russian Federation
Vasily I. Zybkov – Dr Sci. (Phys. and Math.) (2008), Professor (2018) of the Department of Micro- and Nanoelectronics,
5 F, Professor Popov St., St Petersburg 197022.
References
1. Gunapala S. D., Bandara S. V., Liu J. K., Luong E. M., Rafol S. B., Mumolo J. M., Ting D. Z., Bock J. J., Ressler M. E., Werner M. W., LeVan P. D., Chehayeb R., Kukkonen C. A., Levy M., LeVan P., Fauci M. A. Quantum Well Infrared Photodetector Research and Development at Jet Propulsion Laboratory. Infrared Physics & Technology. 2001, vol. 42, no. 3–5, pp. 267–282. doi: 10.1016/S1350-4495(01)00085-8
2. Radioelectronic Complex Catalog. Available at: https://katalog-rek.ru/catalog/395/3823/ (accessed 23.11.2023).
3. Li S. S., Tidrow M. Z. Comparison of n- and pType Quantum Well Infrared Photodetectors. Detectors, Focal Plane Arrays, and Imaging Devices II. 1998, vol. 3553, pp. 97–111. doi: 10.1117/12.318094
4. Henini M., Razeghi M. Handbook of Infrared Detection Technologies. Elsevier, 2002, 532 p.
5. Weber E. R., Liu H. C., Capasso F., Willardson R. K. Intersubband Transitions in Quantum Wells: Physics and Device Applications. Academic Press, 1999, 309 p.
6. Levine B. F. Quantum‐Well Infrared Photodetectors. J. of Applied Physics. 1993, vol. 74, no. 8, pp. R1–R81. doi: 10.1063/1.354252
7. Etteh N. E. I., Harrison P. Quantum Mechanical Scattering Investigation of the Dark Current in Quantum Well Infrared Photodetectors (QWIPs). Infrared Physics & Technology. 2003, vol. 44, no. 5–6, pp. 473– 480. doi: 10.1016/S1350-4495(03)00169-5
8. Bandara S., Gunapala S., Liu J., Mumolo J., Luong E., Hong W., Sengupta D. Quantum Well Infrared Photodetectors: Device Physics and Light Coupling. Springer, 1998, pp. 43–49.
9. Zubkov V. I., Ivanova Ia. V., Weyers M. Direct Observation of Resonant Tunneling in Heterostructure with a Single Quantum Well. Appl. Phys. Let. 2021, vol. 119, p. 043503. doi: 10.1063/5.0056842
10. Lhuillier E., Ribet-Mohamed I., Tauvy M., Nedelcu A., Berger V., Rosencher E. Ultimate Performance of Quantum Well Infrared Photodetectors in the Tunneling Regime. Infrared Physics & Technology. 2009, vol. 52, no. 4, pp. 132–137.
11. Wasilewski Z. R., Liu H. C., Buchanan M. Studies of Si Segregation in GaAs Using Current– Voltage Charac-Teristics Of Quantum Well Infrared Photodetectors. J. of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena. 1994, vol. 12, no. 2, pp. 1273–1276. doi: 10.1116/1.587020
12. Luna E., Guzman A., Munoz E. Offset in the Dark Current Characteristics of Photovoltaic Double Barrier Quantum Well Infrared Photodetectors. Infrared Physics & Technology. 2005, vol. 47, no. 1–2, pp. 22–28. doi: 10.1016/j.infrared.2005.02.007
13. Nutku F., Erol A., Gunes M., Buklu L. B., Ergun Y., Arikan M. C. I–V Characterization of a Quantum Well Infrared Photodetector with Stepped and Graded Barriers. Superlattices and Microstructures. 2012, vol. 52, no. 3, pp. 585–593. doi: 10.1016/j.spmi.2012.06.010
14. Uchiyama Y., Nishino H., Matsukura Y., Miyatake T., Yamamoto K., Fujii T. Characterization of the Dark Current of a Quantum Well Infrared Photodetector (QWIP) with Selectively Doped Barrier Layers. Infrared Detectors and Focal Plane Arrays VII. 2002, vol. 4721, pp. 151–158. doi: 10.1117/12.478844
15. Sim S. K. H., Liu H. C., Shen A., Gao M., Lee K. F., Buchanan M., Ohno Y., Ohno H., Li E. H. Effect of Barrier Width on the Performance of Quantum Well Infrared Photodetector. Infrared Physics & Technology. 2001, vol. 42, no. 3–5, pp. 115–121. doi: 10.1016/S1350-4495(01)00067-6
16. Li N., Xiong D.-Y., Yang X.-F., Lu W., Xu W.-L., Yang C.-L., Hou Y., Fu Y. Dark Currents of GaAs/AlGaAs Quantum-Well Infrared Photodetectors. Applied Physics A. 2007, vol. 89, pp. 701–705. doi: 10.1007/s00339-007-4142-2
Review
For citations:
Bogoslovskaya L.S., Dudin A.L., Zybkov V.I. Influence of Barrier Width on QWIP Operating Voltage. Journal of the Russian Universities. Radioelectronics. 2024;27(4):72-80. (In Russ.) https://doi.org/10.32603/1993-8985-2024-27-4-72-80