Preview

Journal of the Russian Universities. Radioelectronics

Advanced search

Models and Methods for Calculating and Measuring the Shielding Effectiveness of Materials Using Dual and Coaxial TEM Cell

https://doi.org/10.32603/1993-8985-2024-27-4-19-37

Abstract

Introduction. Electromagnetic shielding is used as an additional design tool to ensure electromagnetic compatibility of electronic devices. The shielding material is selected based on its electrophysical parameters at the design stage of electronic devices, taking its electrical and operational characteristics into account. The shielding effectiveness (SE) of composite, layered, or fabric materials with a high electrical conductivity and relative magnetic permeability in a wide frequency range (10 Hz…10 GHz) is difficult and, in some cases, impossible to assess a priori. At the same time, the number of studies in this direction is currently limited.

Aim. To generalize models and methods for calculating and measuring the insertion losses (IL) and SE of materials using dual and coaxial TEM cells in a wide frequency range.

Materials and methods. A method for calculating IL for the electric (E) and magnetic (H) components of the field based on the measured S parameters in a dual TEM cell is described. Expressions for calculating an unloaded dual TEM cell are proposed. These expressions differ in terms of considering the thickness of the material and the tooling that prevents sagging of thin materials, thus allowing the difference between the measured and calculated values of S parameters to be reduced to 3.2 dB. Methods for measuring and calculating the SE of composite materials are described. The results obtained using these methods are compared with those obtained by a standardized method for SE calculation.

Results. The frequency dependencies of the IL for the E and H fields calculated on the basis of the measured S parameters of a dual TEM cell with a cotton and knitted shielding fabric placed inside are presented. The results obtained by the classic and electrodynamic modeling are compared with experimental results for a composite material in a new patented coaxial TEM cell.

Conclusion. Models and methods for calculating and measuring IL and SE can be effectively used for a relatively rapid control and testing of new and available shielding materials, taking the above assumptions and limitations into account. 

About the Author

M. E. Komnatnov
Tomsk State University of Control Systems and Radioelectronics
Russian Federation

Maxim E. Komnatnov, Cand. Sci. (Eng.) (2016), Associate Professor of the Department of Television and Management,

40, Lenina Ave., Tomsk 634050.



References

1. Paul C. R. Introduction to Electromagnetic Compatibility. 2nd ed. New Jersey, John Wiley & Sons, Inc., 2005, 989 p.

2. Celozzi S., Araneo R., Burghignoli P., Lovat G. Electromagnetic Shielding: Theory and Applications. New Jersey, Wiley-IEEE Press, 2023, 563 p.

3. Knyazev A. D., Kechiev L. N., Petrov B. V. Konstryirovanie radioelectronii I electronno-vichislitelnoi apparatyri s ychetom electro-magnnitnoi sovmestimosti [Design of Radio-Electronic and Electronic-Computing Equipment with Consideration of Electromagnetic Compatibility]. Moscow, Radio i svyaz, 1989, 229 p. (In Russ.)

4. Schelkunoff S. A. Electromagnetic Waves. New York, D. Van Nostrand Company, Inc., 1943, 543 p.

5. Teshe F. M., Ianoz M. V., Karlsson T. EMC Analysis Methods and Computational Models. New Jersey, John Wiley & Sons, 1997, 623 p.

6. Mendez H. A. Shielding Theory of Enclosures with Apertures. IEEE Trans. on Electromagnetic Compatibility. 1978, vol. EMC-20, no. 2, pp. 296–305. doi: 10.1109/TEMC.1978.303722

7. Bui V. P., Thitsartarn W., Liu E.-X., Chuan J. Y. C., Chua E.-K. EM Performance of Conductive Composite Laminate Made of Nanostructured Materials for Aerospace Application. IEEE Trans. on Electromagnetic Compatibility. 2015, vol. 57, no. 5, pp. 1139–1148. doi: 10.1109/temc.2015.2432831

8. Balan I., Morari C., Patroi E. Composite Materials for Electromagnetic Shielding. U.P.B. Sci. Bull., Series B. 2016, vol. 78, no. 2, pp. 233–238.

9. Sevgi L. Electromagnetic Screening and Shielding-Effectiveness (SE) Modeling. IEEE Antennas and Propagation Magazine. 2009, vol. 51, no. 1, pp. 211–216. doi: 10.1109/map.2009.4939074

10. Zheng Pan, Yue-bo Li, Jian Zhao, Sheng Jia, Zheng-yu Huang. Shielding Effectiveness of Shields and Their Combined Double-Layer Shields for Low Frequency Pulsed Magnetic Field. Proc. of IEEE Intern. Conf. on Computational Electromagnetics (ICCEM). Shanghai, China, 20–22 March 2019. IEEE, 2019, pp. 1–5. doi: 10.1109/compem.2019.8779048

11. Shapiro D. N. Osnovi teorii electromagnitnogo ekranirovaniya [Fundamentals of Elec-Tromagnetic Shielding Theory]. Leningrad, Energiya, 1975, p. 109. (In Russ.)

12. ECSS-E-HB-20-07A. Space Engineering – Space Systems Electromagnetic Compatibility Handbook. Available at: https://ecss.nl/hbstms/ecss-e-hb-20-07a-electromagnetic-compatibility-handbook-5-september-2012/ (accessed: 19.08.2024).

13. ECSS-E-ST-20-07C. Space Engineering – Electromagnetic Compatibility. Available at: https://ecss.nl/standard/ecss-e-st-20-07c-rev-2-electromagnetic-compatibility-3-january-2022/ (accessed: 19.08.2024).

14. Ansys HFSS. Available at: https://cae-expert.ru/product/ansys-hfss (accessed: 19.08.2024).

15. Ott H. W. Noise Reduction Techniques in Electronic Systems. New Jersey, John Wiley & Sons, Inc., 1988, 448 p.

16. McDowell A., Hubing T. Analysis and Comparison of Plane Wave Shielding Effectiveness Decompositions. IEEE Trans. on Electromagnetic Compatibility. 2014, vol. 56, no. 6, pp. 1711–1714. doi: 10.1109/temc.2014.2332133

17. Ondrejka A. R., Adams J. W. Shielding Effectiveness (SE) Measurement Techniques. Nat. Symp. on Electromagn. Compat., San Antonio, TX, USA, 24–26 Apr. 1984. IEEE, 1984, pp. 249–256. doi: 10.1109/ISEMC.1984.7571012

18. Stanescu C., Chita M. A. Some Aspects Regarding the Experimental Methods for Determining the Shielding Effectiveness of Materials in the Microwave Range. Intern. Conf. on Technical and Physical Problems of Electrical Engineering (ICTPE-2014), Baku, Azerbaijan, 7–8 Sept. 2014, pp. 275–278. doi: 10.13140/rg.2.1.4371.5601

19. IEEE Std 299–2006. Standard Method for Measuring the Effectiveness of Electromagnetic Shielding Enclosures. Available at: https://ieeexplore.ieee.org/document/4117954 (accessed: 19.08.2024).

20. MIL-STD-285. Method of Attenuation Measurements for Enclosures, Electromagnetic Shielding, for Electronic Test Purposes. Available at: https://www.hftechnology.nl/wp-content/uploads/MIL-STD- 285.pdf (accessed: 19.08.2024).

21. IEEE Std 299.1–2013. Method for Measuring the Shielding Effectiveness of Enclosures and Boxes Having All Dimensions Between 0.1 m and 2 m. Available at: https://ieeexplore.ieee.org/document/6712029 (accessed: 19.08.2024).

22. ASTM D4935-18. Standard Test Method for Measuring the Electromagnetic Shielding Effectiveness of Planar Materials. Available at: https://www.astm.org/d4935-18.html (accessed: 19.08.2024).

23. Badic M., Marinescu M.-J. The Failure of Coaxial TEM Cells ASTM Standards Methods in H. F. Range. Proc. of IEEE Int. Symp. on Electromagn. Compat. Minneapolis, MN, USA, 19–23 Aug. 2002. IEEE, 2002, pp. 29–34. doi: 10.1109/ISEMC.2002.1032442

24. Liu Y., Wei W., Xiang C., Xin N., Mo Z., Rui J., Jinxi L. A Test Method for Shielding Effectiveness of Materials against Electromagnetic Pulse Based on Coaxial Flange. Energies. 2023, vol. 16, no. 18, pp. 6701. doi: 10.3390/en16186701

25. Wilson P. F., Ma M. T. A Study of Techniques for Measuring the Electromagnetic Shielding Effectiveness of Materials. Natl. Bur. Stand. Tech. Note 1095, USA, 1986, 72 p.

26. Wilson P. F., Ma M. T., Adams J. W. Techniques for Measuring the Electromagnetic Shielding Effectiveness of Materials: Part I: Far-Field Source Simulation. IEEE Trans. on Electromagn. Compat. 1988, vol. 30, no. 3, pp. 239–250. doi: 10.1109/15.3302

27. Valente R., De Ruijter C., Vlasveld D., Van Der Zwaag S., Groen P. Setup for EMI Shielding Effectiveness Tests of Electrically Conductive Polymer Composites at Frequencies up to 3.0 GHz. IEEE Access. 2017, vol. 5, pp. 16665–16675. doi: 10.1109/access.2017.2741527

28. Tourounoglou E., Gkatsi V., Roc'h A., VogtArdatjew R., Schipper H., Leferink F. Influence of Planar Material Size and Position on Shielding Effectiveness Measurements Using the Dual Waveguide Method. Proc. of IEEE Int. Symp. on Electromagn. Compat. Barcelona, Spain, 2–6 Sept. 2019. IEEE, 2019, pp. 707–711. doi: 10.1109/emceurope.2019.8871968

29. Rudd M., Baum T.C., Ghorbani K. Determining High-Frequency Conductivity Based on Shielding Effectiveness Measurement Using Rectangular Waveguides. IEEE Trans. on Instrumentation and Measurement. 2019, vol. 69, no. 1, pp. 155–162. doi: 10.1109/tim.2019.2895930

30. Wilson P. F., Ma M. T. Small Aperture Analysis of the Dual TEM Cell and an Investigation of Test Object Scattering in a Single TEM Cell. National Bureau of Standards, Tech. Note 1076, USA, 1984. 57 p.

31. Crawford M. L. Generation of Standard EM Fields Using TEM Transmission Cell. IEEE Trans. on Electromagn. Compat. 1974, vol. 16, no. 4, pp. 189–195. doi: 10.1109/temc.1974.303364

32. Wilson P. F., Ma M. T. Techniques for Measuring the Electromagnetic Shielding Effectiveness of Materials: Part II: Near-Field Source Simulation. IEEE Trans. on Electromagn. Compat. 1988, vol. 30, no. 3, pp. 251–259. doi: 10.1109/15.3303

33. Wilson P. F. A Comparison between Near-Field Shielding-Effectiveness Measurements Based on Coaxial Dipoles and Electrically Small Apertures. IEEE Trans. on Electromagn. Compat. 1988, vol. 30, no. 1, pp. 23–28. doi: 10.1109/15.19884

34. Voicu V., Pătru I., Nicolae P. M., Dina L. A. Analyzing the Attenuation of Electromagnetic Shielding Materials for Frequencies Under 1 GHz. Proc. of Int. Symp. on Advanced Topics in Electrical Engineering (ATEE). Bucharest, Romania, 23–25 March 2017. IEEE, 2017, pp. 336–340. doi: 10.1109/atee.2017.7905057

35. Higgins D. F., Wheeler R., Wenaas E. A Comparison of Theoretical Expressions and Experimental Data for EM Penetration Through Small Apertures. IEEE Transactions on Nuclear Science. 1985, vol. 32, no. 6, pp. 4340–4345. doi: 10.1109/tns.1985.4334120

36. Casey K. F. Low-Frequency Electromagnetic Penetration of Loaded Apertures. IEEE Trans. on Electromagn. Compat. 1981, vol. 23, iss. 4, pp. 367–377. doi: 10.1109/aps.1992.221738

37. Avloni J., Ouyang M., Florio L., Henn A. R., Sparavigna A. Shielding Effectiveness Evaluation of Metalized and Polypyrrole-Coated Fabrics. J. of Thermoplastic Composite Materials. 2007, vol. 20, iss. 3, pp. 241–254. doi: 10.1177/0892705707076718

38. Wilson P. F., Ma M. T. Shielding-Effectiveness Measurements with a Dual TEM Cell. IEEE Trans. on Electromagn. Compat. 1985, vol. 27, iss. 3, pp. 137–142. doi: 10.1109/temc.1985.304277

39. McDonald N. A. Electric and Magnetic Coupling through Small Apertures in Shield Walls of Any Thickness. IEEE Trans. Microwave Theory Tech. 1972, vol. 20, iss. 10, pp. 689–695. doi: 10.1109/tmtt.1972.1127844

40. Manara A. Measurement of Material Shielding Effectiveness Using a Dual TEM Cell and Vector Network Analyzer. IEEE Trans. on Electromagn. Compat. 1996, vol. 38, no. 3, pp. 327–333. doi: 10.1109/15.536062

41. Collin R. E. Field Theory of Guided Waves. 2nd ed. New Jersey, Wiley-IEEE Press, 1990, 864 p.

42. Bethe H. A. Theory of Diffraction by Small Holes. Physical Review. 1944, vol. 66, no. 7, pp. 163–182. doi: 10.1103/physrev.66.163

43. Shi D., Gao Y., Shen Y. Determination of Shielding Effectiveness of Multilayer Shield by Making Use of Transmission Line Theory. Proc. of Int. Symp. on Electromagn. Compat. and Electromagnetic Ecology. Russia, Saint Petersburg, 26–29 June 2007. IEEE, 2007, pp. 1–3. doi: 10.1109/emceco.2007.4371656

44. Schulz R. B., Plantz V. C., Brush D. R. Shielding Theory and Practice. IEEE Trans. on Electromagn. Compat. 1988, vol. 30, no. 3, pp. 187–201. doi: 10.1109/15.3297

45. Ivanov A. A., Kvasnikov A. A., Onishchenko I. A., Demakov A. V., Kuksenko S. P. Analytical Model and Software for Evaluating the Shielding Materials Propertiesю IEEE 22nd Int. Conf. of Young Professionals in Electron Devices and Materials (EDM), Souzga, Russia, 30 June– 4 July 2021. IEEE, 2021, pp. 1–5. doi: 10.1109/edm52169.2021.9507593

46. Komnatnov M. E., Gazizov T. R., Matveyenko O. A. The TEM Cell for Assessment of Radioelectronic Equipment of Emission and Immunity with the Possibility of Studying Biologic Objects in the Frequency Range up to 2 GHz. Technologii electromagnitnoii sovmestimosti [Electromagnetic Compatibility Technologies]. 2018, no. 4 (67), pp. 46–56. (In Russ.)

47. Komnatnov M. E., Gazizov T. R. TEM Cell. Pat.RU 2606173. Publ. 10.01.2017 (In Russ.)

48. Demakov A. V., Komnatnov M. E., Ivanov A. A., Nikolaev I. I., Gazizov T. R. Coaxial Chamber for Measuring the Electromagnetic Shielding Effectiveness of Radio Absorbing Materials. Pat RU 2759079. Publ. 09.11.2021 (In Russ.)

49. NWTTC is a part nanotechnology industry network. Available at: http://nwttc.ru/proekty/ekraniruyuwie-materialy/ (accessed: 18.01.2024).

50. RТ-Technology. Available at: https://www.rttex.ru/ (accessed: 18.01.2024).

51. FIPS. Computer Programs, Databases, TIC. Available at: https://www.fips.ru/publication-web/publications/document?lang=en&type=doc&tab=PrEVM&id=120548AC-8096-4D04-B18D-9175649C2440 (accessed: 19.08.2024).


Review

For citations:


Komnatnov M.E. Models and Methods for Calculating and Measuring the Shielding Effectiveness of Materials Using Dual and Coaxial TEM Cell. Journal of the Russian Universities. Radioelectronics. 2024;27(4):19-37. (In Russ.) https://doi.org/10.32603/1993-8985-2024-27-4-19-37

Views: 233


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1993-8985 (Print)
ISSN 2658-4794 (Online)