Preview

Journal of the Russian Universities. Radioelectronics

Advanced search

Gas Sensors Based on Nanostructures of Binary and Ternary Oxide Systems

https://doi.org/10.32603/1993-8985-2024-27-2-105-118

Abstract

Introduction. Nanomaterials based on binary and multicomponent oxides are of interest for the development of catalysts, photocatalysts, gas sensors, solar cells, as well as in other fields. The most effective methods to produce oxide systems of various compositions are those of chemical co-deposition, as well as two-stage approaches.

Aim. To develop sensor nanomaterials based on ZnO, Zn–Fe–O, and Zn–Sn–O ternary oxide nanosystems, as well as to develop methods for assessing their properties.

Materials and methods. ZnO and ZnFe2O4 nanopowders were synthesized by chemical coprecipitation, and ZnFe2O4 and Zn2SnO4 nanostructures were produced by modifying ZnO nanowires. The surface chemical composition and microstructure were studied using scanning electron microscopy, backscattered electron diffraction, and Xray photoelectron spectroscopy. The sensor responses of the samples to vapors of organic solvents were analyzed.

Results. The response value of zinc oxide and zinc ferrite samples synthesized by chemical coprecipitation was found to be 2–4 orders of magnitude higher than that of modified zinc oxide nanowires. The formation of ternary oxide nanostructures led to an increase in the sensor response of zinc oxide nanowires. This effect can be explained by the formation of adsorption sites of various types during formation of such systems. The samples produced by chemical coprecipitation showed an extremely high sensor response. This may be due to the formation of fractal structures at the percolation threshold.

Conclusion. ZnO and ZnFe2O4 oxide nanostructures produced by chemical coprecipitation exhibit a high sensor response to acetone and ethanol vapors. Methods for the formation of multicomponent oxide systems with improved sensor properties compared to the original zinc oxide nanowires were developed. The resultant sensor nanomaterials are promising for use as sensitive layers of gas sensors for detecting organic solvent vapors.

About the Authors

S. S. Nalimova
Saint Petersburg Electrotechnical University
Russian Federation

Svetlana S. Nalimova, Cand. Sci. (Phys.-Math.) (2013), Associate Professor of the Department of Micro- and
Nanoelectronics

5 F, Professor Popov St., St Petersburg 197022



V. A. Moshnikov
Saint Petersburg Electrotechnical University
Russian Federation

Vyacheslav A. Moshnikov, Dr Sci. (Phys.-Math.) (1997), Professor of the Department of Micro- and Nanoelectronics

5 F, Professor Popov St., St Petersburg 197022



Z. V. Shomakhov
Kabardino-Balkarian State University
Russian Federation

Zamir V. Shomakhov, Cand. Sci. (Phys.-Math.) (2012), Associate Professor

173, Chernyshevsky St., Nalchik 360004



V. M. Kondratev
Moscow Institute of Physics and Technology; Alferov University
Russian Federation

Valeriy M. Kondratev, Master in Electronics and Nanoelectronics (2020, Saint Petersburg Electrotechnical
University), Postgraduate Student, Engineer of the Laboratory of Optics of Heterogeneous Structures and Optical Materials of Alferov University, Junior Researcher

8, Khlopina St., St Petersburg 194021



References

1. Kadinskaya S. A., Kondratev V. M., Kindyushov I. K., Koval O. Yu., Yakubovsky D. I., Kusnetsov A., Lihachev A. I., Nashchekin A. V., Akopyan I. Kh., Serov A. Yu., Labzovskaya M. E., Mikushev S. V., Novikov B. V., Shtrom I. V., Bolshakov A. D. DeepLevel Emission Tailoring in ZnO Nanostructures Grown via Hydrothermal Synthesis. Nanomaterials. 2023, vol. 13, p. 58. doi: 10.3390/nano13010058

2. Rembeza S. I., Belousov S. A., Kosheleva N. N., Rembeza E. S., Svistova T. V., Suvaci E., Ozel E., Tuncolu G., Aciksari C. Amorphous Films of Ternary Zinc and Tin Oxides for Transparent Electronics. Technical Physics Letters. 2018, vol. 44, no. 11, pp. 984–987. doi: 10.1134/S1063785018110147

3. Zhai T., Fang X., Liao M., Xu X., Zeng H., Yoshio B., Golberg D. A. Comprehensive Review of OneDimensional Metal-Oxide Nanostructure Photodetectors. Sensors. 2009, vol. 9, pp. 6504–6529. doi: 10.3390/s90806504

4. Wang C., Yin L., Zhang L., Xiang D., Gao R. Metal Oxide Gas Sensors: Sensitivity and Influencing Factors. Sensors. 2010, vol. 10, iss. 3, pp. 2088–2106. doi: 10.3390/s100302088

5. Yang T., Yang X., Zhu M., Zhao H., Zhang M. Coral-like ZnFe2O4–ZnO Mesoporous Heterojunction Architectures: Synthesis and Enhanced Sensing Properties for Triethylamine. Inorganic Chemistry Frontiers. 2020, vol. 7, iss. 9, pp. 1918–1926. doi: 10.1039/d0qi00134a

6. Altaf C. T., Sahsuvar N. S., Abdullayeva N., Coskun O., Kumtepe A., Karagoz E., Sankir M., Sankir N. D. Inverted Configuration of Cu(In,Ga)S2/In2S3 on 3D-ZnO/ZnSnO3 Bilayer System for Highly Efficient Photoelectrochemical Water Splitting. ACS Sustainable Chemistry and Engineering. 2020, vol. 8, iss. 40, pp. 15209–15222. doi: 10.1021/acssuschemeng.0c04846

7. Bashir M. B. A., Rajpar A. H., Salih E. Y., Ahmed E. M. Preparation and Photovoltaic Evaluation of CuO@Zn(Al)O-Mixed Metal Oxides for Dye Sensitized Solar Cell. Nanomaterials. 2023, vol. 13, iss. 5, p. 802. doi: 10.3390/nano13050802

8. Kozlov S. S., Larina L. L., Nikolskaia A. B., Almjasheva O. V., Proskurina O. V., Shevaleevskiy O. I. Solar Cells Based on Complex Oxides. Technical Physics Letters. 2021, vol. 47, pp. 283–286. doi: 10.1134/S1063785021030226

9. Fan J., Niu X., Teng W., Zhang P., Zhang W.-X., Zhao D. Highly Dispersed Fe–Ce Mixed Oxide Catalysts Confined in Mesochannels Toward LowTemperature Oxidation of Formaldehyde. J. of Materials Chemistry A. 2020, vol. 8, iss. 33, pp. 17174– 17184. doi: 1039/D0TA05473A

10. Kim Y., Lim H. S., Lee M., Lee J. W. Ni–Fe–Al Mixed Oxide for Combined Dry Reforming and Decomposition of Methane with CO2 Utilization. Catalysis Today. 2021, vol. 368, pp. 86–95. doi: 10.1016/j.cattod.2020.02.030

11. Chen X., Zhao Z., Liu S., Huang J., Xie J., Zhou Y., Pan Z., Lu H. Ce–Fe–Mn Ternary MixedOxide Catalysts for Catalytic Decomposition of Ozone at Ambient Temperatures. J. of Rare Earths. 2020, vol. 38, pp. 175–181. doi: 10.1016/j.jre.2019.01.010

12. Podila S., Driss H., Zaman S. F., Ali A. M., AlZahrani A. A., Daous M. A., Petrov L. A. MgFe and Mg–Co–Fe Mixed Oxides Derived from Hydrotalcites: Highly Efficient Catalysts for COx Free Hydrogen Production from NH3. Intern. J. of Hydrogen Energy. 2020, vol. 45, iss. 1, pp. 873–890. doi: 10.1016/j.ijhydene. 2019.10.107

13. Abu-Dief A. M., Essawy A. A., Diab A. K., Mohamed W. S. Facile Synthesis and Characterization of Novel Gd2O3–CdO Binary Mixed Oxide Nanocomposites of Highly Photocatalytic Activity for Wastewater Remediation Under Solar Illumination. J. of Physics and Chemistry of Solids. 2021, vol. 148, p. 109666. doi: 10.1016/j.jpcs.2020.109666

14. Munawar T., Iqbal F., Yasmeen S., Mahmood K., Hussain A. Multi Metal Oxide NiO–CdO–ZnO Nanocomposite–Synthesis, Structural, Optical, Electrical Properties and Enhanced Sunlight Driven Photocatalytic Activity. Ceramics International. 2020, vol. 46, iss. 2, pp. 2421–2437. doi: 10.1016/j.ceramint.2019.09.236

15. Petrov V. V., Sysoev V. V., Ignatieva I. O., Gulyaeva I. A., Volkova M. G., Ivanishcheva A. P., Khubezhov S. A., Varzarev Y. N., Bayan E. M. Nanocomposite Co3O4–ZnO Thin Films for Photoconductivity Sensors. Sensors. 2023, vol. 23, no. 12, p. 5617. doi: 10.3390/s23125617

16. Nalimova S. S., Kondratev V. M. Study of Surface Acid-Base Properties of Gas-Sensitive Metal Oxides. 2020 IEEE Conf. of Russ. Young Researchers in Electrical and Electronic Engineering (EIConRus), St Petersburg and Moscow, Russia, 27–30 Jan. 2020. IEEE, 2020, pp. 987–990. doi: 10.1109/EIConRus49466.2020.9039264

17. Nalimova S. S., Kondratev V. M., Ryabko A. A., Maksimov A. I., Moshnikov V. A. Study of Sensor Properties of Zinc Oxide Based Nanostructures. J. of Physics: Conf. Series. 2020, vol. 1658, p. 012033. doi: 10.1088/1742-6596/1658/1/012033

18. Gopel W. Chemisorption and Charge Transfer at Ionic Semiconductor Surfaces: Implications in Designing Gas Sensors. Progress in Surface Science. 1985, vol. 20, pp. 9–103. doi: 10.1016/00796816(85)90004-8

19. Hu J., Li J., Cui J., An W., Liu L., Liang Y., Cui W. Surface Oxygen Vacancies Enriched FeOOH/Bi2MoO6 PhotocatalysisFenton Synergy Degradation of Organic Pollutants. J. of Hazardous Materials. 2020, vol. 384, p. 121399. doi: 10.1016/j.jhazmat.2019.121399

20. Kornyushchenko A., Kosminska Y., Stas S., Wilde G., Perekrestov V. Structural, Morphological and Sensor Properties of the Fractal Percolation Nanosystem ZnO/NiO. J. of Electronic Materials. 2021, vol. 50, pp. 2268–2276. doi: 10.1007/s11664-021-08749-3

21. Veselov G. B., Karnaukhov T. M., Bauman Y. I., Mishakov I. V., Vedyagin A. A. Sol-Gel-Prepared Ni– Mo–Mg–O System for Catalytic Transformation of Chlorinated Organic Wastes into Nanostructured Carbon. Materials. 2020, vol. 13, iss. 19, p. 4404. doi: 10.3390/ma13194404

22. Ivanov K. V., Plotvina A. V., Agafonov A. V. Influence of Fe3O4 on Physicochemical and Photocatalytic Properties of Nanosized Barium Titanate. Russ. J. of Inorganic Chemistry. 2023, vol. 68, pp. 104–114. doi: 10.1134/S0036023622601957 (In Russ.)

23. Moshnikov V. A., Gracheva I. E., Kuznezov V. V., Maximov A. I., Karpova S. S., Ponomareva A. A. Hierarchical Nanostructured Semiconductor Porous Materials for Gas Sensors. J. of Non-Crystalline Solids. 2010, vol. 356, pp. 2020–2025. doi: 10.1016/j.jnoncrysol.2010.06.030

24. Keles E., Yildirim M., Ozturk T., Yildirim O. A. Hydrothermally Synthesized UV Light Active Zinc Stannate: Tin Oxide (ZTO:SnO2) Nanocomposite Photocatalysts for Photocatalytic Applications. Materials Science in Semiconductor Processing. 2020, vol. 110, p. 104959. doi: 10.1016/j.mssp.2020.104959

25. Bachina A. K., Almjasheva O. V., Popkov V. I. Formation of ZrTiO4 under Hydrothermal Conditions. Russ. J. of Inorganic Chemistry. 2022, vol. 67, pp. 830– 838. doi: 10.1134/S003602362206002X (In Russ.)

26. Shuklina A. I., Almjasheva O. V. Structure of Nanocomposites in the ZrO2–Y2O3–Al2O3 System and Their Formation under Hydrothermal Conditions. Russ. J. of Inorganic Chemistry. 2022. Vol. 67, no. 6, pp. 904–911. doi: 10.1134/S0036023622060201

27. Vladimirova S. A., Prikhodko K. Ya., Rumyantseva M. N., Konstantinova E. A., Chizhov A. S., Khmelevsky N. O., Gaskov A. M. Nanocrystalline Complex Oxides NixCo3-xO4: Cations Distribution Impact on Electrical and Gas Sensor Behavior. J. of Alloys and Compounds. 2020, vol. 828, p. 154420. doi: 10.1016/j.jallcom.2020.154420

28. Shams S., Sheibanizadeh Z., Khalaj Z. Ternary Nanocomposite of ZnFe2O4/α-Fe2O3/ZnO; Synthesis Via Coprecipitation Method and Physical Properties Characterization. Applied Physics A. 2021, vol. 127, art. num. 459. doi: 10.1007/s00339-021-04607-5

29. Jiang Z., Liu T., Zhai X., Liu J. Optimization Preparation of Indium Tin Oxide Nanoparticles via Microemulsion Method Using Orthogonal Experiment. Crystals. 2021, vol. 11, iss. 11, p. 1387. doi: 10.3390/cryst11111387

30. Andhare D. D., Jadhav S. A., Khedkar M. V., Somvanshi S. B., More S. D., Jadhav K. M. Structural and Chemical Properties of ZnFe2O4 Nanoparticles Synthesised by Chemical Co-Precipitation Technique. J. of Physics: Conf. Series. 2020, vol. 1644, p. 012014. doi: 10.1088/1742-6596/1644/1/012014

31. Zheng J., Hou H., Fu H., Gao L., Liu H. SizeControlled Synthesis of Porous ZnSnO3 Nanocubes for Improving Formaldehyde Gas Sensitivity. ACS Advances. 2021, vol. 11, iss. 33, pp. 20268–20277. doi: 10.1039/D1RA01852C

32. Choudhary S., Bisht A., Mohapatra S. Microwave-Assisted Synthesis of α-Fe2O3/ZnFe2O4/ZnO Ternary Hybrid Nanostructures for Photocatalytic Applications. Ceramics Intern. 2021, vol. 47, pp. 3833– 3841. doi: 10.1016/j.ceramint.2020.09.243

33. Nalimova S. S., Shomakhov Z. V., Moshnikov V. A., Bobkov A. A., Ryabko A. A., Kalazhokov Z. Kh. An X-ray Photoelectron Spectroscopy Study of Zinc Stannate Layer Formation. Technical Physics. 2020, vol. 65, no. 7, pp. 1087–1090. doi: 10.1134/S1063784220070142

34. Nalimova S. S., Shomakhov Z. V., Gerasimova K. V., Punegova K. N., Guketlov A. M., Kalmykov R. M. Gas-Sensitive Composite Nanostructures Based on Zinc Oxide for Detecting Organic Solvent Vapors. Physical and Chemical Aspects of the Study of Clusters Nanostructures and Nanomaterials. 2022, iss. 14, pp. 678–687. doi: 10.26456/pcascnn/2022.14.678 (In Russ.)

35. Palanivel B., Perumal S. M., Maiyalagan T., Jayarman V., Ayyappan C., Alagiri M. Rational Design of ZnFe2O4/g-C3N4 Nanocomposite for Enhanced Photo-Fenton Reaction and Supercapacitor Performance. Applied Surface Science. 2019, vol. 498, p. 143807. doi: 10.1016/j.apsusc.2019.143807

36. Yamashita T., Hayes P. Analysis of XPS Spectra of Fe2+ and Fe3+ Ions in Oxide Materials. Applied Surface Science. 2008, vol. 254, pp. 2441–2449. doi: 10.1016/j.apsusc.2007.09.063

37. Cao E., Guo Z., Song G., Zhang Y., Hao W., Sun L., Nie Z. MOF-Derived ZnFe2O4/(Fe–ZnO) Nanocomposites with Enhanced Acetone Sensing Performance. Sensors and Actuators B. 2020, vol. 325, p. 128783. doi: 10.1016/j.snb.2020.128783

38. Hanh N. H., Ngoc T. M., Duy L. V., Hung C. M., Duy N. V., Hoa N. D. A Comparative Study on the VOCs Gas Sensing Properties of Zn2SnO4 Nanoparticles, Hollow Cubes, and Hollow Octahedra Towards Exhaled Breath Analysis. Sensors and Actuators B. 2021, vol. 343, p. 130147. doi: 10.1016/j.snb.2021.130147

39. Suetens T., Guo M., Van Acker K., Blanpain B. Formation of the ZnFe2O4 Phase in an Electric Arc Furnace off-Gas Treatment System. J. of Hazardous Materials. 2015, vol. 287, pp. 180–187. doi: 10.1016/j.jhazmat.2015.01.050

40. Shomakhov Z. V., Nalimova S. S., Kondratev V. M., Maksimov A. I., Ryabko A. A., Moshnikov V. A., Molokanov O. A. Changes in the Energy of Surface Adsorption Sites of ZnO Doped with Sn. J. of Surface Investigation. 2023, vol. 17, no. 4, pp. 898–902. doi: 10.1134/S1027451023040316

41. Mandelbrot B. B., Given J. A. Physical Properties of a New Fractal Model of Percolation Clusters. Physical Review Letters. 1984, vol. 52, p. 1853. doi: 10.1103/PhysRevLett.52.1853

42. Moshnikov V. A., Nalimova S. S., Seleznev B. I. Gas-Sensitive Layers Based on Fractal-Percolation Structures. Semiconductors. 2014, vol. 48, pp. 1499– 1503. doi: 10.1134/S1063782614110177


Review

For citations:


Nalimova S.S., Moshnikov V.A., Shomakhov Z.V., Kondratev V.M. Gas Sensors Based on Nanostructures of Binary and Ternary Oxide Systems. Journal of the Russian Universities. Radioelectronics. 2024;27(2):105-118. (In Russ.) https://doi.org/10.32603/1993-8985-2024-27-2-105-118

Views: 368


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1993-8985 (Print)
ISSN 2658-4794 (Online)