Characteristics of the Radiating Element of a Planar Vivaldi Antenna Array with Improved Bandwidth
https://doi.org/10.32603/1993-8985-2024-27-1-48-56
Abstract
Introduction. The conventional approach to extending the operating frequency band of Vivaldi antenna arrays consists in increasing the radiating element length. However, this inevitably leads to an increase in the mass of the entire array, and, therefore, to a rapid growth in the cross-polarization level. Recent studies in this field have mainly focused on techniques for reducing the cross-polarization level. At the same time, the possibility of developing Vivaldi antenna arrays with an extended operating frequency band, primarily without changing the overall dimensions of the elements or the antenna array pitch, remains insufficiently studied.
Aim. Design and study of the Vivaldi antenna radiating element that ensures operation of the array in a wider operating frequency band without increasing its overall dimensions and weight.
Materials and methods. A numerical study of the characteristics of a unit-cell with periodic boundary conditions on the side faces was carried out in the ANSYS HFSS software. A comparative analysis of the unit-cell characteristics of the prototype antenna array and the proposed design was carried out.
Results. The design of the Vivaldi antenna radiating element is presented. The influence of some geometric parameters on the characteristics of the antenna array is studied. A comparative analysis of the unit-cell characteristics of two infinite single-polarization antenna arrays based on a regular Vivaldi element and the proposed solution is carried out. The possibility of improving the antenna array bandwidth by 18.6 % and improving cross-polarization by 15 dB on certain frequencies without increasing the overall dimensions or the antenna array pitch is shown.
Conclusion. The proposed Vivaldi antenna design makes it possible to extend its operating frequency band without increasing the overall dimensions. The results of the conducted numerical study should be used when developing antenna arrays based on the proposed solution.
About the Authors
I. V. BobkovRussian Federation
Ivan N. Bobkov, Engineer's degree in electrical engineering (2011, Southern Federal University), researcher at Advanced engineering school in Cyberplatform Engineering
44, Nekrasovsky Per., Taganrog 347900
Yu. V. Yukhanov
Russian Federation
Yury V. Yukhanov, Dr Sci. (Eng.) (1997), Professor (2000), Head of the Antenna and Radio Transmitter Department at Institute of Radioengineering Systems and Control
44, Nekrasovsky Per., Taganrog 347900
References
1. Gibson P. J. The Vivaldi Aerial. 1979 9th European Microwave Conf. Brighton, UK, 17–20 Sept. 1979. IEEE, 1979, pp. 101–105. doi: 10.1109/EUMA.1979.332681
2. Munk B., Taylor R., Durharn T., Durharn T., Pigon B., Boozer R., Brown S., Jones M., Pryor J., Ortiz S., Rawnick J., Krebs K., Vanstrum M., Gothard G., Wiebelt D. A Low-Profile Broadband Phased Array Antenna. Proc. IEEE Antennas Propag. Soc. Int. Symp. Columbus, USA. 22–27 June 2003. IEEE, 2003, pp. 448–451. doi: 10.1109/APS.2003.1219272
3. Holland S. S., Vouvakis M. N. The Planar Ultrawideband Modular Antenna (PUMA) Array. IEEE Transactions on Antennas and Propagation. 2012, vol. 60, no. 1, pp. 130–140. doi: 10.1109/TAP.2011.2167916
4. Logan J. T., Kindt R. W., Lee M. Y., Vouvakis M. N. A New Class of Planar Ultrawideband Modular Antenna Arrays With Improved Bandwidth. IEEE Transactions on Antennas and Propagation. 2018, vol. 66, no. 2, pp. 692–701. doi: 10.1109/TAP.2017.2780878
5. Logan J. T., Holland S. S., Schaubert D. H., Kindt R. W., Vouvakis M. N. A Review of Planar Ultrawideband Modular Antenna (PUMA) Arrays. Intern. Symp. on Electromagnetic Theory. Hiroshima, Japan, 20–24 May 2013. IEEE, 2013, pp. 868–871.
6. Doane J. P., Sertel K., Volakis J. L. A Wideband, Wide Scanning Tightly Coupled Dipole Array With Integrated Balun (TCDA-IB). IEEE Transactions on Antennas and Propagation. 2013, vol. 61, no. 9, pp. 4538–4548. doi: 10.1109/TAP.2013.2267199
7. Holland S. S., Vouvakis M. N. The Banyan Tree Antenna Array. IEEE Transactions on Antennas and Propagation. 2011, vol. 59, no. 11, pp. 4060–4070. doi: 10.1109/TAP.2011.2164177
8. Logan J. T., Kindt R. W., Vouvakis M. N. A 1.2–12 GHz Sliced Notch Antenna Array. IEEE Transactions on Antennas and Propagation. 2018, vol. 66, no. 4, pp. 1818–1826. doi: 10.1109/TAP.2018.2809476
9. Joon Shin, Schaubert D. H. A Parameter Study of Stripline-Fed Vivaldi Notch-Antenna Arrays. IEEE Transactions on Antennas and Propagation. 1999, vol. 47, no. 5, pp. 879–886. doi: 10.1109/8.774151
10. Latha T., Ram G., Kumar G. A., Chakravarthy M. Review on Ultra-Wideband Phased Array Antennas. IEEE Access. 2021, vol. 9, pp. 129742–129755. doi: 10.1109/ACCESS.2021.3114344
11. Gazit E. Improved Design of the Vivaldi Antenna. IEE Proc. Microwaves, Antennas and Propagation. 1988, vol. 135, no. 2, pp. 89–92. doi: 10.1049/ip-h-2.1988.0020
12. Rodenbeck C. T., Sang-Gyu Kim, Wen-Hua Tu, Coutant M. R., Seungpyo Hong, Mingyi Li, Kai Chang. Ultra-Wideband Low-Cost Phased-Array Radars. IEEE Transactions on Microwave Theory and Techniques. 2005, vol. 53, no. 12, pp. 3697–3703. doi: 10.1109/TMTT.2005.856668
13. Nassar I. T., Weller T. M. A Novel Method for Improving Antipodal Vivaldi Antenna Performance. IEEE Transactions on Antennas and Propagation. 2015, vol. 63, no. 7, pp. 3321–3324. doi: 10.1109/TAP.2015.2429749
14. Schaubert D. H., Kasturi S., Boryssenko A. O., Elsallal W. M. Vivaldi Antenna Arrays for Wide Bandwidth and Electronic Scanning. The Second European Conf. on Antennas and Propagation, Edinburgh, 11–16 Nov. 2007. IEEE, 2007, pp. 1–6. doi: 10.1049/ic.2007.1334
15. Logan J. T., Kindt R. W., Vouvakis M. N. Low Cross-Polarization Vivaldi Arrays. IEEE Transactions on Antennas and Propagation. 2018, vol. 66, no. 4, pp. 1827–1837. doi: 10.1109/TAP.2018.2809492
16. Schaubert D. H., Joon Shin, Wunsch G. Characteristics of Single-Polarized Phased Array of Tapered Slot Antennas. Proc. of Intern. Symp. on Phased Array Systems and Technology, Boston, USA, 15–18 Oct. 1996. IEEE, 1996, pp. 102–106. doi: 10.1109/PAST.1996.565944
17. McGrath D. T., Schuneman N., Shively T. H., Irion J. Polarization Properties of Scanning Arrays. IEEE Intern. Symp. on Phased Array Systems and Technology, Boston, USA, 14–17 Oct. 2003. IEEE, 2003, pp. 295–299. doi: 10.1109/PAST.2003.1256997
18. Kindt R., Taylor D. Polarization Correction in Dual-Polarized Phased Arrays of Flared Notches. 2011 IEEE Intern. Symp. on Antennas and Propagation (APSURSI), Spokane, USA, 03–08 July 2011. IEEE, 2011, pp. 1961–1964. doi: 10.1109/APS.2011.5996888
19. Kindt R. W., Logan J. T. Dual-Polarized MetalFlare Sliced Notch Antenna Array. IEEE Transactions on Antennas and Propagation. 2020, vol. 68, no. 4, pp. 2666–2674. doi: 10.1109/TAP.2020.2969724
20. Kindt R., Mital R., Logan J., Vouvakis M. Dual-Polarized Sliced Notch Array – Ultra-Wideband Flares with Exceptional Polarization Control. IEEE Intern. Symp. on Phased Array Systems and Technology (PAST), Waltham, USA, 18–21 Oct. 2016. IEEE, 2016, pp. 1–5. doi: 10.1109/ARRAY.2016.7832628
21. Kindt R. W., Logan J. T. Single-Polarization Vivaldi Antenna Array with Orthogonal Walls for Improved Polarization Purity. IEEE Intern. Symp. on Phased Array Systems & Technology (PAST), Waltham, USA, 11–14 Oct. 2022. IEEE, 2022, pp. 1–4. doi: 10.1109/PAST49659.2022.9975104
22. Kindt R. W., Logan J. T. Cross-Polarization Treatment in Linearly Polarized Vivaldi Array Apertures. IEEE Intern. Symp. on Phased Array Systems & Technology (PAST), Waltham, USA, 11–14 Oct. 2022. IEEE, 2022, pp. 01–04. doi: 10.1109/PAST49659.2022.9975012
23. Yukhanov Yu. V., Bobkov I. N. Linear Vivaldi Antenna Array with Improved Low-Band Performance. Radiation and Scattering of Electromagnetic Waves (RSEMW), Divnomorskoe, Russia, 28 June 2021 – 02 July 2021. IEEE, 2021, pp. 203–206. doi: 10.1109/RSEMW52378.2021.9494118
24. Yukhanov Yu. V., Privalova T. Yu., Merglodov I. V., Ilyin I. V., Bobkov I. N. Modernizirovannaya sverhshirokopolosnaya antenna Vival'di [Modernized Ultra-Wideband Vivaldi Antenna]. Patent RU, no. 203479, 2021. (In Russ.)
25. Kindt R. W., Logan J. T. Benchmarking Ultrawideband Phased Antenna Arrays: Striving for Clearer and More Informative Reporting Practices. IEEE Antennas and Propagation Magazine. 2018, vol. 60, no. 3, pp. 34–47. doi: 10.1109/MAP.2018.2818464
26. Schaubert D. H. A Gap-Induced Element Resonance in Single-Polarized Arrays of Notch Antennas. Proc. of IEEE Antennas and Propagation Society International Symp. and URSI National Radio Science Meeting, Seattle, USA, 20–24 June 1994. IEEE, 1994, vol. 2, pp. 1264–1267. doi: 10.1109/APS.1994.407859
27. Pozar D. M. The Active Element Pattern. IEEE Transactions on Antennas and Propagation. 1994, vol. 42, no. 8, pp. 1176–1178. doi: 10.1109/8.310010
Review
For citations:
Bobkov I.V., Yukhanov Yu.V. Characteristics of the Radiating Element of a Planar Vivaldi Antenna Array with Improved Bandwidth. Journal of the Russian Universities. Radioelectronics. 2024;27(1):48-56. (In Russ.) https://doi.org/10.32603/1993-8985-2024-27-1-48-56