Preview

Journal of the Russian Universities. Radioelectronics

Advanced search

A Methodology to Design Broadband Negative Inductors with Tight Tolerance for Microwave Applications

https://doi.org/10.32603/1993-8985-2023-26-6-74-93

Abstract

Introduction. Non-Foster elements (NFEs) mimic behavior of hypothetical negative inductors or capacitors in a certain frequency band. NFEs are used to compensate reactance of conventional inductors and capacitors that allows designing broadband microwave devices. To realize NFEs, active circuits referred to as negative impedance converters (NICs) are employed to convert the load impedance into the negative input impedance. The conversion error, caused by non-optimal choice of NIC parameters and non-idealities of NIC components, limits the accuracy and operating bandwidth of NFEs. The necessity to account for many factors, which indirectly and oppositely impact the final result, and unavailability of a universal design methodology complicate the design of NFEs significantly. As a result, broadband NFE characteristics differ from the target ones remarkably that limits practical applications.

Aim. Elaboration of a design methodology to compensate the Linvill’s NIC conversion error and realize high-accuracy broadband negative inductors.

Materials and methods. Influence of NIC constituent parameters on the negative inductor frequency characteristics is considered. The performed analysis and the identified relationships allowed us to propose a step-by-step methodology to design negative inductors having tight tolerance over a broad frequency band. The use of a transmission line section instead of a lumped inductor in the NIC load when realizing negative inductors of high absolute values is shown to be advantageous as this allows providing better tolerance and wider bandwidth.

Results. In order to demonstrate possibilities enabled by the proposed methodology, simulation results are presented for the GHz-range negative inductors with a set of inductance and tolerance values.

Conclusion. The results obtained show that the proposed methodology makes it possible to compensate the conversion error without any numerical optimization and therefore to reduce the deviation of the negative inductance from the target value in the given frequency range or to broaden the bandwidth for a given tolerable deviation of the negative inductance.

About the Authors

B. S. Buiantuev
JSC "NITI "Avangard"
Russian Federation

Bair S. Buiantuev, Master in electronic design and technology (2016, Saint Petersburg Electrotechnical University); the Head of the Department for Design and Upgrade of Radio Electronic Equipment, JSC "NITI "Avangard". The author of 11 scientific publications. Area of expertise: non-Foster elements and their applications.

72, Kondratievsky Ave., St Petersburg 195271



N. S. Kalmykov
Saint Petersburg Electrotechnical University
Russian Federation

Nikita S. Kalmykov, Master in electronic design and technology (2020, Saint Petersburg Electrotechnical University), a Junior Researcher at the Department of Microwave Electronics. The author of 11 scientific publications. Area of expertise: non-Foster elements and microwave filters.

5 F, Professor Popov St., St Petersburg 197022



E. V. Iakovenko
JSC "MART"
Russian Federation

Egor V. Iakovenko, Master in electronics and nanoelectronics (2023, Saint Petersburg Electrotechnical University); a second-class engineer at JSC "MART". Area of expertise: non-Foster elements and frequency-tunable filters.

51-2, 12th Line of Vasilievsky Island, St Petersburg 199178



D. V. Kholodnyak
Saint Petersburg Electrotechnical University
Russian Federation

Dmitry V. Kholodnyak, Dr. Sci. (Eng.) (2016), Professor, Leading Researcher, Acting Chair of the Department of Microwave Electronics. The author of 200 scientific publications. Area of expertise: microwave applications of metamaterials; high-temperature superconductors; low-temperature cofired ceramics, and non-Foster elements.

5 F, Professor Popov St., St Petersburg 197022



References

1. Foster R. M. A Reactance Theorem. Bell Labs Technical J. 1924, vol. 3, no. 2, pp. 259–267. doi: 10.1002/j.1538-7305.1924.tb01358.x

2. Sussman-Fort S. E., Rudish R. M. Non-Foster Impedance Matching of Electrically-Small Antennas. IEEE Trans. on Antennas and Propag. 2009, vol. 57, no. 8, pp. 2230–2241. doi: 10.1109/TAP.2009.2024494

3. Zhu N., Ziolkowski R. W. Broad-Bandwidth, Electrically Small Antenna Augmented with an Internal Non-Foster Element. IEEE Antennas Wireless Propag. Let. 2012, vol. 11, pp. 1116–1120. doi: 10.1109/LAWP.2012.2219572

4. Elfrgani A. M., Rojas R. G. Stabilizing Non-Foster-Based Tuning Circuits for Electrically Small Antennas. Proc. IEEE Antennas Propag. Int. Symp. Memphis, TN, USA, Jul. 2014. IEEE, 2014, pp. 464– 465. doi: 10.1109/APS.2014.6904563

5. Ivanov N., Buyantuev B., Turgaliev V., Kholodnyak D. Non-Foster Broadband Matching Networks for Electrically-Small Antennas. Proc. 2016 Loughborough Antennas and Propagation Conf., Loughborough, UK, Nov. 2016. IEEE, 2017, pp. 1–4. doi: 10.1109/LAPC.2016.7807596

6. Ivanov N., Turgaliev V., Kholodnyak D. Performance Improvement of an Electrically-Small Loop Antenna Matched with Non-Foster Negative Inductance. Proc. 2017 IEEE MTT-S Int. Microwave Symp., Honolulu, HI, USA, Jun. 2017. IEEE, 2017, pp. 348– 351. doi: 10.1109/MWSYM.2017.8059117

7. Jacob M. M., Sievenpiper D. F. Non-Foster Matched Antennas for High-Power Applications. IEEE Trans. Antennas Propag. 2017, vol. 65, no. 9, pp. 4461– 4469. doi: 10.1109/TAP.2017.2727513

8. Shi T., Tang M.-C., Wu Z., Xu H.-X., Ziolkowski R. W. Improved Signal-to-Noise Ratio, Bandwidth-Enhanced Electrically Small Antenna Augmented With Internal Non-Foster Elements. IEEE Trans. Antennas Propag. 2019, vol. 67, no. 4, pp. 2763–2768. doi: 10.1109/TAP.2019.2894331

9. Batel L., Pintos J.-F., Rudant L. Superdirective and Broadband Compact Antenna Array Using Non-Foster Elements. Proc. 2019 Int. Workshop on Antenna Technol. (iWAT), Miami, FL, USA, May 2019. IEEE, 2019, pp. 17–20. doi: 10.1109/IWAT.2019.8730643

10. Souai S., Diallo A., Ribero J.-M., Aguili T. Design of Compact Superdirective and Reconfigurable Array Antenna Associated with Non-Foster Elements for IoT. Proc. 2020 Int. Workshop on Antenna Technol. (iWAT), Bucharest, Romania, Feb. 2020. IEEE, 2020, pp. 1–4. doi: 10.1109/iWAT48004.2020.1570607198

11. Lee Y.-H., Cho S.-Y., Chung J.-Y. SNR Enhancement of an Electrically Small Antenna Using a Non-Foster Matching Circuit. Appl. Sci. 2020, vol 10, no. 13, pp. 4464. doi:10.3390/app10134464

12. Almokdad S., Lababidi R., Le Roy M., Sadek S., Perennec A., Le Jeune D. Methodology for Broadband Matching of Electrically Small Antenna Using Combined Non-Foster and Passive Networks. Analog Integr Circ Sig Process. 2020, vol. 104, pp. 251–263. doi:10.1007/s10470-020-01672-3

13. Albarracín-Vargas F., González-Posadas V., Segovia-Vargas D. Small Printed Antenna Array Based on Non-Foster Networks. Proc 17th Int. Congr. on Artif. Mat. for Novel Wave Phenomena (Metamaterials 2023), Crete, Greece, Sept. 2023. IEEE, 2023, pp. X-332–X-334. doi: 10.1109/Metamaterials58257.2023.10289315

14. Buiantuev B., Vincelj L., Kholodnyak D., Hrabar S. A Novel Design Methodology for Non-Foster Elements with Application in Broadband Self-Oscillating Antennas. Proc. of 14th Eur. Conf. on Antennas and Propag. (EuCAP 2020), Copenhagen, Den-mark, March 2020. IEEE, 2020, pp. 1–4. doi: 10.23919/EuCAP48036.2020.9135388

15. Hrabar S., Kholodnyak D., Buiantuev B., Dobrijevic D., Jakovcev M., Zeljko A., Martinic M., Krois I. Non-Foster Self-Oscillating Single-Loop Antenna. Proc. of 14th Int. Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials 2020), New York, USA, October 2020. IEEE, 2020, pp. X-124–X-126. doi: 10.1109/Metamaterials49557.2020.9285087

16. Vincelj L., Krois I., Hrabar S. Toward Self-Oscillating Non-Foster Unit Cell for Future Active Metasurfaces. IEEE Trans. Antennas Propag. 2020, vol. 68, no. 3, pp. 1665–1679. doi: 10.1109/TAP.2019.2951529

17. Hrabar S. First Ten Years of Active Metamaterial Structures with "Negative" Elements. EPJ Applied Metamaterials. 2018, vol. 5, no. 9, pp. 1–12. doi: 10.1051/epjam/2018005

18. Kiasat Y., Pacheco-Peña V., Edwards B., Engheta N. Temporal Metamaterials with Non-Foster Networks. Proc. 2018 Conf. on Lasers and Electro-Optics, San Jose, CA, USA, Мay 2018. IEEE, 2018, pp. 1–2. doi: 10.1364/CLEO_AT.2018.JW2A.90

19. Fisné C., Мartel C., Franc A., Raveu N. Study and Optimization of a Non-Foster Circuit for the Design of Wideband Metasurfaces. Proc. 2019 Int. Conf. on Electromagn. in Adv. Appl., Granada, Spain, Sep. 2019. IEEE, 2019, pp. 0761–0764. doi: 10.1109/ICEAA.2019.8879230

20. Kalmykov N., Buiantuev B., Kholodnyak D. Broadband Metasurfaces Loaded with Non-Foster Elements. J. of Phys.: Conf. Ser. 2021, vol. 2015, 012061, pp. 1–7. doi: 10.1088/1742-6596/2015/1/012061

21. Cheng W., Annema A. J., Wienk G. J. M., Nauta B. A Wideband IM3 Cancellation Technique Using Negative Impedance for LNAs with Cascode Topology. Proc. 2012 IEEE Radio Freq. Integr. Circuits Symp. Montreal, QC, Canada, Jun. 2012. IEEE, 2021, pp. 13–16. doi: 10.1109/RFIC.2012.6242221

22. Lee S., Park H., Kim J., Kwon Y. A 6–18 GHz GaN pHEMT Power Amplifier Using non-Foster Matching. Proc. 2015 IEEE MTT-S Int. Microw. Symp., Phoenix, AZ, USA, Мay 2015. IEEE, 2015, pp. 1–4. doi: 10.1109/MWSYM.2015.7167127

23. Akwuruoha C. N., Hu Z. 64 to 70 GHz Microstrip Non-Foster Circuit Class-J GaAs pHEMT Power Amplifier. Proc. 25th Telecommun. Forum, Belgrade, Serbia, Nov. 2017. IEEE, 2018, pp. 1–4. doi: 10.1109/TELFOR.2017.8249391

24. Akwuruoha C. N., Hu Z. 55 to 59 GHz MMIC Non-Foster Circuit Enabled Class-J GaAs pHEMT Power Amplifier. Proc. 2018 Int. Conf. on Integr. Circuit Design and Technol., Otranto, Italy, Jun. 2018. IEEE, 2018, pp. 149–152. doi: 10.1109/ICICDT.2018.8399778

25. Chen Y., Mouthaan K. Wideband Varactorless LC VCO Using a Tunable Negative-Inductance Cell. IEEE Trans. on Circuits and Syst. I: Regular Papers. 2010, vol. 57, no. 10, pp. 2609–2617. doi: 10.1109/TCSI.2010.2046967

26. Wu Q., Elabd S., Quach T. K., Мattamana A., Dooley S. R., McCue J., Orlando P. L., Creech G. L., Khalil A. W. −189 dBc/Hz FOMT Wide Tuning Range Ka-band VCO Using Tunable Negative Capacitance and Inductance Redistribution. Proc. 2013 IEEE Radio Freq. Integr. Circuits Symp., Seattle, WA, USA, Jun. 2013. IEEE, 2013, pp. 199–202. doi: 10.1109/RFIC.2013.6569560

27. Lee W., Lee S., Park H., Choi K., Lee W., Kwon Y. A W-band Push-Push VCO Using Non-Foster Circuit for Enhanced Frequency Tuning Range. Proc. 2016 URSI Asia-Pacific Radio Sci. Conf., Seoul, Korea, Aug. 2016. IEEE, 2016, pp. 653–656.

28. Lee W., Lee S., Choi J., So J., Kwon Y. Ka-band VCO with Parasitic Capacitance Cancelling Technique. Electronics Let. 2017, vol. 53, no. 1, pp. 38–40. doi: 10.1049/el.2016.3799

29. Nguyen D.-A., Seo C. A Novel Varactorless Tuning Technique for Clapp VCO Design Using Tunable Negative Capacitor to Increase Frequency-Tuning Range. IEEE Access. 2021, vol. 9, pp. 99562–99570. doi: 10.1109/ACCESS.2021.3096187

30. Kholodnyak D., Turgaliev V., Rusakov A., Zemlyakov K., Vendik I. A Frequency Independent Phase Inverting All-Pass Network Suitable for a Design of Ultra-Wideband 180° Phase Shifters. Proc 2011 41st European Microwave Conf., Мanchester, UK, Oct. 2011. IEEE, 2011, pp. 643–646. doi: 10.23919/EuMC.2011.6101987

31. Buyantuev B., Kholodnyak D. Design of Immittance Inverters and Phase Inverters with Non-Foster Elements. Proc. 22nd Int. Conf. on Microwaves, Radar and Wireless Communications, Poznan, Poland, Мay 2018. IEEE, 2018, pp. 29–32. doi: 10.23919/MIKON.2018.8405203

32. Al Mokdad S., Lababidi R., Le Roy M., Sadek S., Perennec A., Le Jeune D. Wide-band Active Tunable Phase Shifter Using Improved Non-Foster Circuit. Proc 2018 25th IEEE Int. Conf. on Electronics, Circuits and Syst., Bordeaux, France, Dec. 2018. IEEE, 2019, pp. 449–452. doi: 10.1109/ICECS.2018.8618011

33. Kholodnyak D. V., Turgaliev V. M. Towards a Design of the Ultra-Wideband Microwave Devices Using the Non-Foster Negative Reactances. Proc. 7th German Microwave Conf, Ilmenau, Germany, Мar. 2012. IEEE, 2012, pp. 1–4.

34. Shi T., Tang M.-C., Ziolkowski R. W. The Design of a Compact, Wide Bandwidth, Non-Foster-Based Substrate Integrated Waveguide Filter. Proc. 2018 IEEE Asia-Pacific Conf. on Antennas and Propag., Auckland, New Zealand, Aug. 2018. IEEE, 2018, pp. 54–56. doi: 10.1109/APCAP.2018.8538271

35. Buiantuev В., Kalmykov N., Kholodnyak D., Brizić A., Vincelj L., Hrabar S. Physically Oriented Design of Negative Capacitors Based on Linvill’s Floating Impedance Converter. IEEE Trans. on Microwave Theory & Techniques. 2022, vol. 70, no. 1, pp. 139–154. doi: 10.1109/TMTT.2021.3131544

36. Kalmykov N., Kholodnyak D. Non-Foster Elements Pave the Way to Design Novel Wideband and Tunable Bandpass Filters. Proc. of 2022 Asia-Pacific Microwave Conf. (APMC 2022), Yokohama, Japan, November 2022. IEEE, 2023, pp. 830–832. doi: 10.23919/APMC55665.2022.9999939

37. Okorn B., Nožina D., Žanic D., Hrabar S. Use of Non-Foster Elements based on Compensated Passive Structure in Tunable Bandpass Filter. 2023 Int. Symp. ELMAR, Zadar, Croatia, September 2023. IEEE, 2023, pp. 117–122. doi: 10.1109/ELMAR59410.2023.10253914

38. Kolev S., Delacressonniere B., Gautier J. L. Using a Negative Capacitance to Increase the Tuning Range of a Varactor Diode in MMIC Technology. IEEE Trans. Microwave Theory & Tech. 2001, vol. 49, no. 12, pp. 2425–2430. doi: 10.1109/22.971631

39. Leontyev A., Kalmykov N., Kholodnyak D. Varactor Diode Tunability Enhancement by Means of a Non-Foster Negative Capacitor on Linvill’s NIC. Proc. of 2023 IEEE Int. Symp. on Radio-Frequency Integration Technology (RFIT 2023), Cairns, Australia, August 2023. IEEE, 2023, pp. 70–72. doi: 10.1109/RFIT58767.2023.10243351

40. Linvill J. G. Transistor Negative-Impedance Converters. Proc. IRE. 1953, vol. 41, no. 6, pp. 725– 729. doi: 10.1109/JRPROC.1953.274251

41. Vorobev E., Turgaliev V., Kholodnyak D., Ivanov N. Active Tunable Inductor Using Non-Foster Element. Proc. IEEE Conf. of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), St. Petersburg, Russia, Apr 2017. IEEE, 2017, pp. 346–349. doi: 10.1109/EIConRus.2017.7910562

42. Saadat S., Aghasi H., Afshari E. Low-Power Negative Inductance Integrated Circuits for GHz Applications. IEEE Microw. and Wireless Compon. Let. 2015, vol. 25, no. 2, pp. 118–120. doi: 10.1109/LMWC.2014.2382631

43. White C. R., May J. W., Colburn J. S. A Variable Negative-Inductance Integrated Circuit at UHF Frequencies // IEEE Microw. and Wireless Compon. Let. 2012, vol. 22, no. 1, pp. 35–37. doi: 10.1109/LMWC.2011.2175718

44. Covington J. M. C., Smith K. L, Shehan J. W Measurement of a CMOS Negative Inductor for Wide-band Non-Foster Metamaterials. Proc IEEE SOUTHEASTCON 2014, Lexington, USA. 13–16 Mar. 2014. IEEE, 2014, pp. 1–4. doi: 10.1109/SECON.2014.6950694

45. Paillot J.-M., Cordeau D A Wideband Varactor-Tuned BICMOS Negative Inductance Design. Proc 2014 Int. Conf. on Appl. and Theor. Electricity (ICATE), Craiova, Romania, Mar. 2014. IEEE, 2014, pp. 1–4. doi: 10.1109/ICATE.2014.6972591

46. Zhenxing X., Meiling L., Zhu Q. Realizing Wideband Negative Inductor Using Current Feedback Amplifier. Microw. and Opt. Technol. Let. 2016, vol. 58, no. 7, pp. 1723–1728. doi: 10.1002/mop.29896

47. Hong J.-S., Lancaster M. J. Microstrip Filters for RF–Microwave Applications. N.Y., John Wiley & Sons, Inc., 2001, 457 p.

48. Jimenez-Мartin J. L., Gonzalez-Posadas V., Parra-Cerrada A., Blanco-Campo A., Ugarte-Munoz E., Segovia-Vargas D. Full Conditions for the Stability Analysis of Negative Impedance Converters. Proc. 6th Eur. Conf. Antennas Propag., Prague, Czech Republic, Мar. 2012. IEEE, 2012, pp. 135–138. doi: 10.1109/EuCAP.2012.6206680

49. Tang Q., Xin H. Stability Analysis of Non-Foster Circuit Using Normalized Determinant Function. IEEE Trans. Microw. Theory Techn. 2017, vol. 65, no. 9, pp. 3269–3277. doi: 10.1109/TMTT.2017.2687425


Review

For citations:


Buiantuev B.S., Kalmykov N.S., Iakovenko E.V., Kholodnyak D.V. A Methodology to Design Broadband Negative Inductors with Tight Tolerance for Microwave Applications. Journal of the Russian Universities. Radioelectronics. 2023;26(6):74-93. (In Russ.) https://doi.org/10.32603/1993-8985-2023-26-6-74-93

Views: 415


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1993-8985 (Print)
ISSN 2658-4794 (Online)