Preview

Journal of the Russian Universities. Radioelectronics

Advanced search

Effect of the Configuration and Shape of External Ribs of Sealed Enclosures of Electronic Devices on Heat Removal Efficiency

https://doi.org/10.32603/1993-8985-2023-26-5-63-75

Abstract

   Introduction. Modern computing and electronic devices are constructed on the basis of radio-electronic components, such as processors, graphics processing units, etc. During operation, these components emit tens of watts of thermal energy. Therefore, effective excess heat removal from both semiconductor electronic devices and electronic systems as a whole through the use of passive or active cooling systems represents an important research problem.

   Aim. To study the influence of the configuration and shape of external ribs of sealed enclosures of electronic devices, which use solely passive cooling systems inside, on the efficiency of heat removal from the processor for each
enclosure design under consideration based on their comparative analysis.

   Materials and methods. Simulation experiments were carried out using 3D parametric models of various device types, which were developed in the SolidWorks Flow Simulation software environment. These models differed in terms of configuration of thermal channels formed by the external enclosure ribs.

   Results. The conducted simulation experiments allowed the authors to study the cooling process of processors installed in modern electronic devices. The influence of the configuration and shape of the enclosure ribs on excess heat removal from the processor was studied in a passive cooling mode and when blowing the devices with air moving from above (perpendicular to the cover) or laterally (parallel to the cover) with a gradual increase in a processor power from 10 to 25 W. A ribbed enclosure with passive cooling was shown to ensure a more effective heat removal from a 10 W processor compared to a non-ribbed enclosure (the temperature drop is 4.1 °C). For a 25 W processor, this value comprises 11.01 °C. When blowing the device, the direction (perpendicular or parallel) of air movement significantly affects the cooling efficiency of the heated surface (with a processor power of 45 W, the difference is more than 10 °C).

   Conclusion. The developed 3D models effectively simulate the cooling system of heat-loaded high-power radio-electronic components located in sealed enclosures, due to the implementation of their external ribbing.

About the Authors

G. А. Piskun
Educational Establishment "Belarusian State University of Informatics and Radioelectronics"
Belarus

Gennady А. Piskun, Cand. Sci. (Eng.) (2015), Associate Professor (2016). The author more than 110 scientific publications

Department of Design of Information and Computer Systems

Area of expertise: the impact of electrostatic discharges on semiconductor
devices; methods for modeling and optimizing the parameters of radio-electronic components that qualitatively improve their technical characteristics

220013

6, P. Brovki St.

Minsk



V. F. Аlexeev
Educational Establishment "Belarusian State University of Informatics and Radioelectronics"
Belarus

Victor F. Аlexeev, Cand. Sci. (Eng.) (1991), Associate Professor (1992). The author
more than 300 scientific publications

Department of Design of Information and Computer Systems

Area of expertise: thermal nonstationarity of semiconductor structures and
integrated circuits; modeling methods and their software implementation; predicting the reliability of radio-electronic equipment

220013

6, P. Brovki St.

Minsk



A. V. Stsepchankou
Оpen Joint-Stock Company "NIIEVM"
Belarus

Aleh V. Stsepchankou, Director. The author more than 20 scientific publications

Area of expertise: development of special PCs and microwave devices

220040

155, Bogdanovicha St.

Minsk



A. N. Popov
Оpen Joint-Stock Company "NIIEVM"
Belarus

Aleksandr N. Popov, Cand. Sci. (Eng.) (1988), Scientific secretary. The author more than 50 scientific publications

Area of expertise: modeling and testing of radio-electronic equipment; forecasting the reliability of radio-electronic equipment

220040

155, Bogdanovicha St.

Minsk



A. N. Belikov
Educational Establishment "Belarusian State University of Informatics and Radioelectronics"
Belarus

Andrey N. Belikov, Student

The author of 5 scientific publications

Area of expertise: modeling of thermal processes occurring in the radioelectronics devices

220013

6, P. Brovki St.

Minsk



D. G. Rybakov
Educational Establishment "Belarusian State University of Informatics and Radioelectronics"
Belarus

Dmitry G. Rybakov, Student. The author of 5 scientific publications

Area of expertise: modeling of thermal processes occurring in the radioelectronics devices

220013

6, P. Brovki St.

Minsk



References

1. Моделирование распределения температуры в токоведущих элементах интегральных микросхем в результате воздействия электростатических разрядов / Г. А. Пискун, В. Ф. Алексеев, В. Л. Ланин, В. Г. Левин // Докл. БГУИР. 2014. № 4 (82). С. 16–22.

2. Основы конструирования и технологии радиоэлектронных средств / Г. М. Алдонин, А. М. Алешечкин, М. М. Валиханов, С. П. Желудько, О. А. Тронин. Красноярск: ИПЦ СФУ, 2011. 360 с.

3. The Impact of ESD on Microcontrollers / G. A. Piskun, V. F. Alexeev, S. M. Avakov, V. E. Matyushkov, D. S. Titko / ed. by V. E. Alexeev. Minsk: Kolorgrad, 2018. 184 p.

4. Яновский А. А., Каныгин Я. В. Математическое моделирование и разработка систем охлаждения процессоров персональных компьютеров // Междунар. студенческий науч. вестн. 2015. № 3–4. С. 496–498. URL: https://eduherald.ru/ru/article/view?id=14148 (дата обращения 10. 06. 2023).

5. Дульнев Г. Н. Тепло- и массообмен в радиоэлектронной аппаратуре. М.: Высш. шк., 1984. 247 с.

6. Критериальные уравнения теплообмена: расчет теплоотдачи в трубах и каналах. URL: http://thermalinfo.ru/eto-interesno/kriterialnye-uravneniya-teploobmena-raschet-teplootdachi-v-trubah-i-kanalah?ysclid=lisz04evan563077006 (дата обращения 10. 06. 2023).

7. Numerical Basis of CAD-Embedded CFD. URL: https://www.solidworks.com/sw/docs/flow_basis_of_cad_embedded_cfd_whitepaper.pdf (дата обращения 10. 06. 2023).

8. Intel® Core™ i5-10210U Processor. URL: https://ark.intel.com/content/www/us/en/ark/products/195436/intel-core-i510210u-processor-6m-cache-up-to-4-20-ghz.html (дата обращения 10. 06. 2023).

9. Intel® Core™ i5-10200H Processor. URL: https://ark.intel.com/content/www/us/en/ark/products/208016/intel-core-i510200h-processor-8m-cache-up-to-4-10-ghz.html (дата обращения 10. 06. 2023).

10. iBOX-8365UE Fanless Embedded BOX PC. URL: https://www.asrockind.com/en-gb/iBOX-8365UE (дата обращения 10. 06. 2023).

11. В мини-ПК Sparton LPC-835 используется процессор Intel Core i5 или i7 с пассивным охлаждением. URL: https://www.ixbt.com/news/2017/05/02/sparton-lpc-835-intel-core-i5-i7.html (дата обращения 10. 06. 2023).

12. AIPC-A3601. URL: http://www.ask-ia.com.cn/en/products/%e5%b7%a5%e4%b8%9a%e7%94%b5%e8%84%91aipc-a3602 (дата обращения 10. 06. 2023).

13. DX-1100. URL: https://www.cincoze.com/goods_info.php?id=286 (дата обращения 10. 06. 2023).

14. AI Vehicle Computer RSL A3 Jetson AGX Xavier. URL: https://www.syslogic.com/eng/ai-vehicle-computer-rsl-a3-jetson-agx-xavier-113419.shtml?parentPageId=113479 (дата обращения 10. 06. 2023).

15. Моделирование отведения тепловой энергии от процессоров при помощи кулеров воздушного охлаждения / Г. А. Пискун, В. Ф. Алексеев, А. Н. Беликов, Д. Г. Рыбаков // Докл. БГУИР. 2023. Т. 21, № 4. С. 54–62. doi: 10.35596/1729-7648-2023-21-4-54-62

16. Перенести в английский вариант

17. Piskun G. A., Alekseev V. F., Lanin V. L., Levin V. G. Modeling of Temperature Distribution in Current-Carrying Elements of Integrated Circuits as a Result of Exposure to Electrostatic Discharges. Reports of BSUIR. 2014, no. 4 (82), pp. 16–22. (In Russ.)

18. Aldonin, G. M., Aleshechkin A. M., Valikhanov M. M., Zheludko S. P., Tronin O. A. Fundamentals of Design and Technology of Radio-Electronic Means. CPI SibFU, 2011, 360 p. (In Russ.)

19. Piskun G. A., Alexeev V. F., Avakov S. M., Matyushkov V. E., Titko D. S. The Impact of ESD on Microcontrollers. Ed. by V. E. Alexeev. Minsk, Kolorgrad, 2018. 184 p.

20. Yanovsky A. A., Kanygin Y. V. Mathematical Modeling and Development of Cooling Systems for Personal Computer Processors. Intern. Student Scientific Bulletin. 2015, no. 3–4, pp. 496–498. Available at: https://eduherald.ru/ru/article/view?id=14148 (accessed 10. 06. 2023). (In Russ.)

21. Dulnev G. N. Heat and Mass Transfer in Electronic Equipment. Moscow, Higher School, 1984, 247 p. (In Russ.)

22. Criteria Heat Transfer Equations: Calculation of Heat Transfer in Pipes and Channels. Available at: http://thermalinfo.ru/eto-interesno/kriterialnye-uravneniya-teploobmena-raschet-teplootdachi-v-trubah-i-kanalah?ysclid=lisz04evan563077006 (accessed 10. 06. 2023).

23. Numerical Basis of CAD-Embedded CFD. Available at: https://www.solidworks.com/sw/docs/flow_basis_of_cad_embedded_cfd_whitepaper.pdf (accessed 10. 06. 2023).

24. Intel® Core™ i5-10210U Processor. Available at: https://ark.intel.com/content/www/us/en/ark/products/195436/intel-core-i510210u-processor-6m-cache-up-to-4-20-ghz.html (accessed 10. 06. 2023).

25. Intel® Core™ i5-10200H Processor. Available at: https://ark.intel.com/content/www/us/en/ark/products/208016/intel-core-i510200h-processor-8m-cache-up-to-4-10-ghz.html (accessed 10. 06. 2023).

26. iBOX-8365UE Fanless Embedded BOX PC. Available at: https://www.asrockind.com/en-gb/iBOX-8365UE (accessed 10. 06. 2023).

27. The Sparton LPC-835 Mini-PC Uses an Intel Core i5 or i7 Processor with Passive Cooling. Available at: https://www.ixbt.com/news/2017/05/02/sparton-lpc-835-intel-core-i5-i7.html (accessed 10. 06. 2023). (In Russ.)

28. AIPC-A3601. Available at: http://www.ask-ia.com.cn/en/products/%e5%b7%a5%e4%b8%9a%e7%94%b5%e8%84%91aipc-a3602 (accessed 10. 06. 2023).

29. DX-1100. Available at: https://www.cincoze.com/goods_info.php?id=286 (accessed 10. 06. 2023).

30. AI Vehicle Computer RSL A3 (Jetson AGX Xavier). Available at: https://www.syslogic.com/eng/ai-vehicle-computer-rsl-a3-jetson-agx-xavier-113419.shtml?parentPageId=113479 (accessed 10. 06. 2023).

31. Piskun G. A., Alexeev V. F., Belikov A. N., Rybakov D. G. Simulation of Thermal Energy Removal from Processors Using Air Coolers. Doklady BGUIR. 2023, vol. 21, iss. 4, pp. 54–62. doi: 10.35596/1729-7648-2023-21-4-54-62. (In Russ.)


Review

For citations:


Piskun G.А., Аlexeev V.F., Stsepchankou A.V., Popov A.N., Belikov A.N., Rybakov D.G. Effect of the Configuration and Shape of External Ribs of Sealed Enclosures of Electronic Devices on Heat Removal Efficiency. Journal of the Russian Universities. Radioelectronics. 2023;26(5):63-75. (In Russ.) https://doi.org/10.32603/1993-8985-2023-26-5-63-75

Views: 407


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1993-8985 (Print)
ISSN 2658-4794 (Online)