Approaches to Heterogeneous Integration for Millimeter-Wave Applications
https://doi.org/10.32603/1993-8985-2023-26-4-33-55
Abstract
Introduction. Enhanced performance of electronic systems can be achieved by heterogeneous integration of different semiconductor technologies. The benefits of heterogeneous integration become obvious when close connections between the devices are provided. The development of integration approaches, enabling functionality and improved performance, appears a relevant task for modern microwave microelectronics.
Aim. Review of state-of-the-art and promising heterogeneous integration concepts and techniques in microwave microelectronics.
Materials and methods. Eight integration approaches that ensure the connection of devices based on different semiconductor technologies for microwave frequencies are considered: monolithic heterogeneous integration, wafer bonding, micro-transfer printing, embedded chip assembly, print additive manufacturing, wire bonding, flip-chip, and hotvia. The integration approaches are analyzed in terms of their implementation specifics, advantages and disadvantages.
Results. Monolithic heterogeneous integration and wafer bonding, as well as micro-transfer printing, despite the minimum interconnections, have a number of fundamental limitations. These limitations are related to the compatibility of various semiconductor technologies and the necessity of high technological capabilities. The technology of embedded chip assembly enables the variability of implementation techniques, which makes it possible to provide unique characteristics, e.g., due to the integration of magnetic materials. However, this approach is associated with a high complexity of integration technological processes. Flip-chip integration ensures minimal interconnect losses due to bump miniaturization. Hot-via, as a modification of flip-chip, provides for a better compatibility with microstrip type circuitry. Their further improvement and mass application largely depends on the development of technologies for the formation of low-pitch interconnections.
Conclusion. The development of close integration approaches in microwave microelectronics is proceeding both in the monolithic direction, i.e., monolithic heterogeneous integration wafer bonding, as well as in the quasi-monolithic direction, i.e., micro-transfer printing, embedded chip assembly, print additive manufacturing, flip-chip, and hot-via. The conducted comparative analysis of the presented methods has practical application.
About the Author
A. S. EfimovRussian Federation
Alexander S. Efimov - Master`s Degree in electronics and nanoelectronics (Ryazan State Radioengineering University, 2017), Engineer
2A, Vokzalnaya st., Fryazino 141190
The author of more than 15 scientific publications. Area of expertise: wide band gap semiconductors; millimeter-wave power amplifiers and low-noise amplifiers; heterogeneous integration in mm-wave application.
References
1. Heinrich W., Hossain M., Sinha S., Schmückle F.-J., Doerner R., Krozer V., Weimann N. Connecting Chips with More Than 100 GHz Bandwidth. IEEE J. Microw. 2021, vol. 1, no. 1, pp. 364–373. doi: 10.1109/JMW.2020.3032879
2. Herrault F., Wong J. C., Tang Y., Tai H. Y., Ramos I. Heterogeneously Integrated RF Circuits Using Highly Scaled off-the-Shelf GaN HEMT Chiplets. IEEE Microwave and Wireless Components Let. 2020, vol. 30, no. 11, pp. 1061–1064. doi: 10.1109/LMWC.2020.3025126
3. Collaert N., Alian A., Banerjee A., Boccardi G., Cardinael P. et al. III-V/III-N Technologies for Next Generation High-Capacity Wireless Communication. 2022 Intern. Electron Devices Meeting (IEDM), San Francisco, USA, 03–07 Dec. 2022. IEEE, 2022, pp. 11.5.1–11.5.4. doi: 10.1109/IEDM45625.2022.10019555
4. OMMIC D01PH Technological Process. Available at: https://www.macom.com/european-semiconductor-center/mesc-processes (accessed 24.08.2023)
5. Lai R., Chou Y. C., Lee L. J., Liu P. H., Leung D., Kan Q., Mei X., Lin C. H., Farkas D., Barsky M., Eng D., Cavus A., Lange M., Chin P., Wojtowicz M., Block T., Oki A. High Performance and High Reliability of 0.1μm InP HEMT MMIC Technol-ogy on 100 mm InP Substrates. IEEE 19th Intern. Conf. on Indium Phosphide & Related Materials, Matsue, Japan, 14–18 May 2007. IEEE, 2007, pp. 63–66. doi: 10.1109/ICIPRM.2007.381123
6. Leblanc R., Santos Ibeas N., Gasmi A., Auvray F., Poulain J., Lecourt F., Dagher G., Frijlink P. 6W Ka Band Power Amplifier and 1.2dB NF X-Band Amplifier Using a 100nm GaN/Si Process. 2016 IEEE Compound Semiconductor Integrated Circuit Symp. (CSICS), Austin, TX, USA, 23–26 Oct. 2016. IEEE, 2016, pp. 1–4. doi: 10.1109/CSICS.2016.7751009
7. Avenier G., Diop M., Chevalier P., Troillard G., Loubet N. et al. 0.13 μ m SiGe BiCMOS Technology Fully Dedicated to mm-Wave Applications. IEEE J. of Solid-State Circuits. 2009, vol. 44, no. 9, pp. 2312– 2321. doi: 10.1109/JSSC.2009.2024102
8. Zamdmer N., Ray A., Plouchart J.-O., Wagner L., Fong N., Jenkins K. A., Jin W., Smeys P., Yang I., Shahidi G., Assaderghi F. A 0.13-/spl mu/m SOI CMOS Technology for Low-Power Digital and RF Applications. 2001 Symp. on VLSI Technology. Digest of Technical Papers, Kyoto, Japan, 12–14 June 2001. IEEE, 2001, pp. 85–86. doi: 10.1109/VLSIT.2001.934959
9. Ren J., Liu C., Tang C. W., Lau K. M., Sin J. K. O. A Novel Si–GaN Monolithic Integration Technology for a High-Voltage Cascoded Diode. IEEE Electron Device Let. 2017, vol. 38, no. 4, pp. 501–504. doi: 10.1109/LED.2017.2665698
10. Hoke W. E. Semiconductor Structure Having Silicon Devices, Column III-Nitride Devices, and Column III-non-Nitride or Column II-VI devices. Pat. US 8823146B1. 02.09. 2014.
11. Kazior T. E. Beyond CMOS: Heterogeneous Integration of III–V Devices, RF MEMS and Other Dissimilar Materials/Devices with Si CMOS to Create Intelligent Microsystems. Phil. Trans. R. Soc. A. 2014, vol. 372, no. 2012, p. 20130105. doi: 10.1098/rsta.2013.0105
12. Zhang R., Zhao B., Huang K., You T., Jia Q., Lin J., Zhang S., Yan Y., Yi A., Zhou M., Ou X. Silicon-on-insulator with Hybrid Orientations for Heterogeneous Integration of GaN on Si (100) Substrate. AIP Advances. 2018, vol. 8, no. 5, p. 055323. doi: 10.1063/1.5030776
13. Kazior T. E., LaRoche J. R., Hoke W. E. More Than Moore: GaN HEMTs and Si CMOS Get It Together. 2013 IEEE Compound Semiconductor Integrated Circuit Symp. (CSICS), Monterey, CA, USA, 13–16 Oct. 2013. IEEE, 2013, pp. 1–4. doi: 10.1109/CSICS.2013.6659239
14. Mendes J. C., Liehr M., Li C. Diamond/GaN HEMTs: Where from and Where to? Materials. 2022, vol. 15, no. 2, p. 415. doi: 10.3390/ma15020415
15. Park J.-S., Tang M., Chen S., Liu H. Heteroepitaxial Growth of III-V Semiconductors on Silicon. Crystals. 2020, vol. 10, iss. 12, p. 1163. doi: 10.3390/cryst10121163
16. Bao S., Wang Y., Lina K., Zhang L., Wang B., Sasangka W. A., Lee K. E. K., Chua S. J., Michel J., Fitzgerald E., Tan C. S., Lee K. H. A Review of Silicon-Based Wafer Bonding Processes, an Approach to Realize the Monolithic Integration of Si-CMOS and III–V-on-Si wafers. J. Semicond. 2021, vol. 42, no. 2, p. 023106. doi: 10.1088/1674-4926/42/2/023106
17. Warnock S., Chen C.-L., Knechtl J., Molnar R. et. al. InAlN/GaN-on-Si HEMT with 4.5 W/mm in a 200- mm CMOS-Compatible MMIC Process for 3D Integration. IEEE/MTT-S Intern. Microwave Symp. (IMS). 2020, Los Angeles, CA, USA, 04–06 Aug. 2020. IEEE, 2020, pp. 289–292. doi: 10.1109/IMS30576.2020.9224061
18. Carter A. D., Urteaga M. E., Griffith Z. M., Lee K.-J., Roderick J., Rowell P., Bergman J., Hong S., Patti R., Petteway C., Fountain G., Ghosel K., Bower C. A. Si/InP Heterogeneous Integration Techniques from the Wafer-Scale (Hybrid Wafer Bonding) to the Discrete Transistor (Micro-Transfer Printing). 2018 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conf. (S3S), Burlingame, CA, USA, 15– 18 Oct. 2018. IEEE, 2018, pp. 1–4. doi: 10.1109/S3S.2018.8640196
19. LaRoche J. Towards a Si Foundry-Compatible GaN-on-Si MMIC Process on 200 mm Si with Cu Damascene BEOL (Conf. Presentation). Proc. SPIE 11280, Gallium Nitride Materials and Devices XV, 112801G. 10 March 2020. doi: 10.1117/12.2543913
20. Hossain M., Eissa M. H., Hrobak M., Stoppel D., Weimann N., Malignaggi A., Mai A., Kissinger D., Heinrich W., Krozer V. A Hetero-Integrated W-Band Transmitter Module in InP-on-BiCMOS Technology. 13th European Microwave Integrated Circuits Conf. (EuMIC), Madrid, Spain, 23–25 Sep. 2018. IEEE, 2018, pp. 97–100. doi: 10.23919/EuMIC.2018.8539915
21. Corbett B., Loi R., Zhou W., Liu D., Ma Z. Transfer Print Techniques for Heterogeneous Integration of Photonic Components. Progress in Quantum Electronics. 2017, vol. 52, pp. 1–17. doi: 10.1016/j.pquantelec.2017.01.001
22. Gong Z. Layer-Scale and Chip-Scale Transfer Techniques for Functional Devices and Systems: A Review. Nanomaterials. 2021, vol. 11, iss. 4, art. 842, pp. 1–47. doi: 10.3390/nano11040842
23. Moutanabbir O., Gösele U. Heterogeneous Integration of Compound Semiconductors. Annual Review of Materials Research. 2010, vol. 40, iss. 1, pp. 469–500. doi: 10.1146/annurev-matsci-070909-104448
24. Lerner R., Hansen N. H. Commercial Sweet Spots for GaN and CMOS Integration by Micro-Transfer-Printing. ISPS’21 Proc. Prague, Czech Technical University. 2021, pp. 99–106. doi: 10.14311/ISPS.2021.015
25. Downey B. P., Xie A., Mack S., Katzer D. S., Champlain J. G., Cao Yu, Nepal N., Growden T. A., Gokhale V. J., Coffie R. L., Hardy M. T., Beam E., Lee C., Meyer D. J. Micro-transfer Printing of GaN HEMTs for Heterogeneous Integration and Flexible RF Circuit Design. Device Research Conf., Columbus, OH, USA, 21–24 June 2020. IEEE, 2020, pp. 1–2. doi: 10.1109/DRC50226.2020.9135179
26. Kim D., Yook J. M., An S. J., Kim S. R., Yook J.- G., Kim J. C. A Compact and Low-Profile GaN Power Amplifier Using Interposer-Based MMIC Technology. IEEE 16th Electronics Packaging Technology Conf., Singapore. 03–05 Dec. 2014. IEEE, 2014, pp. 672–675. doi: 10.1109/EPTC.2014.7028416
27. Kompa G., Wasige E., Joodaki M. Quasi Monolithic Hybrid Technology Based on Si Micromachining and Low-Temperature Thin-Film Processing. World Micro-technologies Congress of MICROTEC. 2000. Sep. 2000, pp. 109–114.
28. Herrault F., Wong J. C., Regan D., Brown D. F., Fung H., Tang Y., Sharifi H. Metal-Embedded Chiplet Assembly for Microwave Integrated Circuits. IEEE Transactions on Components, Packaging and Manufacturing Technology. 2020, vol. 10, no. 9, pp. 1579–1582. doi: 10.1109/TCPMT.2020.3012505
29. Lee H.-B., Min B.-W., Kim Y.-G., Yook J. M., Kim S., Kim W. Si-Embedded IC Package for W-band Applications: Interconnection Analysis. 2019 IEEE Asia-Pacific Microwave Conf., Singapore, 10–13 Dec. 2019. IEEE, 2019, pp. 1080–1082. doi: 10.1109/APMC46564.2019.9038484
30. Estrada A., Lasser G., Pinto M., Herrault F., Popović Z. Metal-Embedded Chip Assembly Processing for Enhanced RF Circuit Performance. IEEE Transactions on Microwave Theory and Techniques. 2019, vol. 67, no. 9, pp. 3537–3546. doi: 10.1109/TMTT.2019.2931010
31. Cui Y., Chen H.-Y., Chen S. et al. Monolithically Integrated Self-Biased Circulator for mmWave T/R MMIC Applications. 2021 IEEE Intern. Electron Devices Meeting. 2021, pp. 4.2.1–4.2.4. doi: 10.1109/IEDM19574.2021.9720611
32. He X., Tehrani B. K., Bahr R., Su W., Tentzeris M. M. Additively Manufactured mm-Wave Multichip Modules with Fully Printed ‘Smart’ Encapsulation Structures. IEEE Trans. Microwave Theory Techn. 2020, vol. 68, no. 7, pp. 2716–2724. doi: 10.1109/TMTT.2019.2956934
33. Craton M. T., Konstantinou X., Albrecht J. D., Chahal P., Papapolymerou J. Additive Manufacturing of a W-Band System-on-Package. IEEE Transactions on Microwave Theory and Techniques. 2021, vol. 69, no. 9, pp. 4191–4198. doi: 10.1109/TMTT.2021.3076066
34. Cung G., Spence T., Borodulin P. Enabling Broadband, Highly Integrated Phased Array Radiating Elements Through Additive Manufacturing. IEEE Intern. Symp. on Phased Array Systems and Technology, Waltham, MA, USA, 18–21 Oct. 2016. IEEE, 2016, pp. 1–9. doi: 10.1109/ARRAY.2016.7832632
35. Kolias N. J., Borkowski M. T. The Development of T/R Modules for Radar Applications. IEEE/MTT-S Intern. Microwave Symp. Digest, Montreal, QC, Canada, 17–22 June 2012. IEEE, 2012, pp. 1–3. doi: 10.1109/MWSYM.2012.6259727
36. Kamioka J., Kawamura Y., Tarui Y., Nakahara K., Kamo Y., Okazaki H., Hangai M., Yamanaka K., Fukumoto H. A Low-Cost 30-W Class X-Band GaN-on-Si MMIC Power Amplifier with a GaAs MMIC Output Matching Circuit. 13th European Microwave Integrated Circuits Conf., Madrid, Spain, 23–25 Sep. 2018. IEEE, 2018, pp. 93–96. doi: 10.23919/EuMIC.2018.8539903
37. Joodaki M., Kricke A., Hillmer H., Kompa G. Interconnects Analyses in Quasi-Monolithic Integration Technology. IEEE Electrical Performane of Electronic Packaging, Scottsdale, AZ, USA, 23–25 Oct. 2006. IEEE, 2006, pp. 229–232. doi: 10.1109/EPEP.2006.321236
38. Testa P. V., Morath H., Goran P., Carta C., Ellinger F. A Cost-Effective Flip-Chip Interconnection for Applications from DC until 200 GHz. 2019 IEEE AsiaPacific Conf. on Applied Electromagnetics, Melacca, Malaysia, 25–27 Nov. 2019. IEEE, 2019, pp. 1–6. doi: 10.1109/APACE47377.2019.9021003
39. Enoch S., Gola A., Lecoq P., Rivetti A. Design Considerations for a New Generation of Sipms with Unprecedented Timing Resolution. J. Inst. 2021, vol. 16, no. 02, pp. P02019–P02019. doi: 10.1088/1748-0221/16/02/P02019
40. Tsai W. S., Huang C. Y., Chung C. K., Yu K. H., Lin C. F. Generational Changes of Flip Chip Interconnection Technology. 12th Intern. Microsystems, Packaging, Assembly and Circuits Technology Conf. (IMPACT), Taipei, Taiwan, 25–27 Oct. 2017. IEEE, 2017, pp. 306–310. doi: 10.1109/IMPACT.2017.8255955
41. Green D. S., Dohrman C. L., Demmin J., Chang T.-H. Path to 3D Heterogeneous Integration. Intern. 3D Systems Integration Conf. (3DIC), Sendai, Japan, 31 Aug.–02 Sep. 2015. IEEE, 2015, pp. FS7.1–FS7.3. doi: 10.1109/3DIC.2015.7334469
42. Tofteberg H. R, Schjølberg-Henriksen K., Fasting E. J., Moen A. S., Taklo M. M. V., Poppe E. U., Simensen C. J. Wafer-level Au–Au Bonding in the 350–450 °C Temperature Range. J. of Micromechanics and Microengineering. 2014, vol. 24, iss. 8, p. 084002. doi: 10.1088/0960-1317/24/8/084002
43. Sun L., Chen M.-H., Zhang L., He P., Xie L.-S. Recent Progress in SLID Bonding in Novel 3D-IC Technologies. J. of Alloys and Compounds. 2020, vol. 818, art. 152825. doi: 10.1016/j.jallcom.2019.152825
44. Rausch M., Flisgen T., Stolmacker C., Stranz A., Thies A., Doerner R., Yacoub H., Heinrich W. Technology for the Heterointegration of InP DHBT Chiplets on a SiGe BiCMOS Chip for mm-wave MMICs. 52nd European Microwave Conf. (EuMC), Milan, Italy, 27–29 Sep. 2022. IEEE, 2022, pp. 28–31. doi: 10.23919/EuMC54642.2022.9924451
45. Efimov A. S., Zaycev A. A., Kurochka A. S., Temnov A. M., Dudinov K. V., Emelianov A. M., Korolkova D. D., Rudina A. D., Ranzhin Y. S. Flip-Chip Integration of III-V Chips on Wafer for mmW Applications. IEEE 8th All-Russ. Microwave Conf. (RMC), Moscow, Russia, 23–25 Nov. 2022. IEEE, 2022, pp. 220–222. doi: 10.1109/RMC55984.2022.10079408
46. Li C.-H., Hsieh W.-T., Chiu T.-Y. A Flip-ChipAssembled W-Band Receiver in 90-nm CMOS and IPD Technologies. IEEE Transactions on Microwave Theory and Techniques. 2019, vol. 67, no. 4, pp. 1628–1639. doi: 10.1109/TMTT.2019.2894426
47. Pavlidis S., Alexopoulos G., Ulusoy A. Ç., Cho M., Papapolymerou J. Encapsulated Organic Package Technology for Wideband Integration of Heterogeneous MMICs. IEEE Transactions on Microwave Theory and Techniques. 2017, vol. 65, no. 2, pp. 438–448. doi: 10.1109/TMTT.2016.2630067
48. Heinrich W. The Flip-Chip Approach for Millimeter Wave Packaging. IEEE Microwave Magazine. 2005, vol. 6, no. 3, pp. 36–45. doi: 10.1109/MMW.2005.1511912
49. Schwantuschke D., Ture E., Braun T., Nguyen T. D., Wohrmann M., Pretl M., Engels S. Fan-out Wafer Level Packaging of GaN Traveling Wafer Amplifier. 2022 IEEE/MTT-S Intern. Microwave Symp. - IMS 2022, Denver, CO, USA, 19–24 June 2022. IEEE, 2022, pp. 579–582. doi: 10.1109/IMS37962.2022.9865579
50. Feghhi R., Joodaki M. Thermal Analysis of Microwave GaN-HEMTs in Conventional and FlipChip Assemblies. Intern. J. of RF and Microwave Computer-Aided Engineering. 2018, vol. 28, iss. 8, art. e21513. doi: 10.1002/mmce.21513
51. Song S., Kim Y., Maeng J., Lee H., Kwon Y., Seo K.-S. A Millimeter-Wave System-on-Package Technology Using a Thin-Film Substrate With a FlipChip Interconnection. IEEE Transactions on Advanced Packaging. 2009, vol. 32, no. 1, pp. 101–108. doi: 10.1109/TADVP.2008.2006626
52. Tsukashima K., Anegawa O., Kawasaki T., Otsuka A., Kubota M., Tokumitsu T., Ogita S. Transceiver MMIC's for Street Surveillance Radar. 11th European Microwave Integrated Circuits Conf. (EuMIC), London, UK, 03–04 Oct. 2016. IEEE, 2016, pp. 329– 332. doi: 10.1109/EuMIC.2016.7777557
53. Kazior T. E., Atkins H. N., Fatemi A., Chen Y., Colomb F. Y., Wendler J. P. DBIT-Direct Backside Interconnect Technology: a Manufacturable, Bond Wire Free Interconnect Technology for Microwave and Millimeter Wave MMICs. 1997 IEEE MTT-S Intern. Microwave Symp. Digest, Denver, CO, USA, 08–13 June 1997. IEEE, 1997, pp. 723–726. doi: 10.1109/MWSYM.1997.602892
54. Yang J., Zou B., Xu J., Zhou J. A Hot-via Chip-to-substrate Interconnect for Ultra-compact System Package Application up to W Band. PIER Let. 2022, vol. 107, pp. 75–81. doi: 10.2528/PIERL22020201
55. Alleaume PF., Toussain C., Auvinet C., Domnesque D., Quentin P., Camiade M. Millimetre-Wave Hot-Via Interconnect-Based GaAs Chip-Set for Automotive RADAR and Security Sensors. 2008 European Microwave Integrated Circuit Conf., Amsterdam, Netherlands, 27–28 Oct. 2008. IEEE, 2008, pp. 52–55. doi: 10.1109/EMICC.2008.4772226
Review
For citations:
Efimov A.S. Approaches to Heterogeneous Integration for Millimeter-Wave Applications. Journal of the Russian Universities. Radioelectronics. 2023;26(4):33-55. (In Russ.) https://doi.org/10.32603/1993-8985-2023-26-4-33-55