Preview

Journal of the Russian Universities. Radioelectronics

Advanced search

Diagnostics of Atmospheric Plasma Jets of Helium and Argon Barrier Discharge in a Cylindrical Microwave Cavity Resonator

https://doi.org/10.32603/1993-8985-2023-26-3-122-135

Abstract

Introduction. Technologies related to the use of low-temperature atmospheric plasmas are developing at a rapid pace. Creation of new low-temperature plasma sources for specific applications requires monitoring of dynamic processes in such discharges with a high time resolution. Electron concentration is one the most important plasma characteristics, which can be very low for a low-temperature atmospheric pressure plasma. However, the methods currently available for diagnostics of gas-discharge plasmas are either characterized by insufficient sensitivity or unable to monitor dynamic processes in non-stationary discharges. In this regard, the development of new diagnostic approaches to low-temperature atmospheric plasma seems to be a relevant research direction.
Aim. To develop a diagnostic method for an atmospheric plasma with a low gas temperature and a low electron concentration in a cylindrical microwave resonator.
Materials and methods. The proposed diagnostic method is based on the well-known principle of measuring the frequency shift and the Q-factor of the eigenmodes of the microwave resonator, inside which the plasma under study is located.
Results. Measurements of the atmospheric barrier discharge plasma jets in a helium and argon stream in a cylindrical microwave resonator were performed. The proposed geometry made it possible to significantly increase the sensitivity of measurements. It became possible to exclude the effect of polarization degeneracy in a round cylindrical resonator. The developed system was also tested on test objects with a known value of permittivity.
Conclusion. A method for microwave diagnostics of stationary and non-stationary cold atmospheric plasma jets in a cylindrical resonator, inside which transmitting and receiving antennas are installed, as well as an orthogonal thin conductor preventing the excitation of undesirable modes, was developed.

About the Authors

Aleksandr M. Astafiev
Saint Petersburg Electrotechnical University
Russian Federation

Aleksandr M. Astafiev, Cand. Sci. (Phys.-Math.) (2017),  Associate Professor (2020) at the Department of Physics.

The author of 80 scientific publications. Area of  expertise: gas discharge physics; radiophysics; physics of  wave processes.

5 F, Professor Popov St., St Petersburg 197022



Aleksandr M. Altmark
Saint Petersburg Electrotechnical University
Russian Federation

Aleksandr M. Altmark, Cand. Sci. (Phys.-Math.) (2005),  Associate Professor (2005) at the Department of Physics.

The author of 60 scientific publications. Area of  expertise: acoustics; physics of wave processes; gas  discharge physics.

5 F, Professor Popov St., St Petersburg 197022



Nikita A. Lesiv
Saint Petersburg Electrotechnical University
Russian Federation

Nikita A. Lesiv, Master's Degree (2018), Assistant (2021)  of the Department of Physics.

The author of 20 scientific publications. Area of  expertise: acoustics; physics of wave processes; gas  discharge physics.

5 F, Professor Popov St., St Petersburg 197022



Alexander S. Chirtsov
Saint Petersburg Electrotechnical University
Russian Federation

Alexander S. Chirtsov, Dr Sci. (Phys.-Math.) (2014), Head  of the Department of Physics.

The author of 120 scientific publications. Area of  expertise: photonics; gas discharge physics.

5 F, Professor Popov St., St Petersburg 197022



References

1. Fang Z., Yang J., Liu Y., Shao T., Zhang C. Surface Treatment of Polyethylene Terephthalate to Improving Hydrophilicity Using Atmospheric Pressure Plasma Jet. IEEE Transactions on Plasma Science. 2013, vol. 41, no. 6, pp. 1627–1634. doi: 10.1109/TPS.2013.2259508

2. Ohkubo Y., Endo K., Yamamura K. Adhesivefree Adhesion between Heat-Assisted Plasma-Treated Fluoropolymers (PTFE, PFA) and Plasma-Jet-Treated Polydimethylsiloxane (PDMS) and Its Application. Scientific Reports. 2018, vol. 8, art. num. 18058, pp. 1–11. doi: 10.1038/s41598-018-36469-y

3. Fang Z., Yang H., Qiu Y. Surface Treatment of Polyethylene Terephthalate Films Using a Microsecond Pulse Homogeneous Dielectric Barrier Discharges in Atmospheric Air. IEEE Transactions on Plasma Science. 2010, vol. 38, no. 7, pp. 1615–1623. doi: 10.1109/TPS.2010.2048342

4. Park G. Y., Park S. J., Choi M. Y., Koo I. G., Byun J. H., Hong J. W., Sim J. Y., Collins G. J., Lee J. K. Atmospheric-Pressure Plasma Sources for Biomedical Applications. Plasma Sources Science and Technology. 2012, vol. 21, no. 4, p. 043001. doi: 10.1088/0963-0252/21/4/043001

5. Fridman A., Friedman G. Plasma Medicine. Chichester, John Wiley & Sons Limited, 2013, 526 p.

6. Winter J., Brandenburg R., Weltmann K.-D. Atmospheric Pressure Plasma Jets: an Overview of Devices and New Directions. Plasma Sources Science and Technology. 2015, vol. 24, no. 6, p. 064001. doi: 10.1088/0963-0252/24/6/064001

7. Shashurin A., Keidar M. Experimental Approaches for Studying Non-Equilibrium Atmospheric Plasma Jets. Phys. Plasmas. 2015, vol. 22, no. 12, p. 122002. doi: 10.1063/1.4933365

8. Balcon N., Aanesland A., Boswell R. Pulsed RF Discharges, Glow and Filamentary Mode at Atmospheric Pressure in Argon. Plasma Sources Sci. Technol. 2007, vol. 16, no. 2, pp. 217–225. doi: 10.1088/0963-0252/16/2/002

9. Pai D., Lacoste D., Laux C. Nanosecond Repetitively Pulsed Discharge in Air at Atmospheric Pressure – Spark Regime. Plasma Sources Sci. Technol. 2010, vol. 19, no. 6, art. num. 065015. doi: 10.1088/0963-0252/19/6/065015

10. Rajendra Shrestha Dr., Reeta Shilpakar Er., Deepak Prasad Subedi Dr. Measurement of Electron Density in Atmospheric Pressure Cold Argon Plasma Jet. Intern. J. of Recent Research and Review. 2019, vol. XII, iss. 2, pp. 27–33.

11. Marshall K. A., Hieftje G. M. Measurement of True Gas Kinetic Temperatures in an Inductively Coupled Plasma by Laser-Light Scattering. Plenary Lecture J. of Analytical Atomic Spectrometry. 1987, iss. 6, pp. 567–571. doi: 10.1039/JA9870200567

12. Belostotskiy S. G., Khandelwal R., Wang Q., Donnelly V. M., Economou D. J., Sadeghi N. Measurement of Electron Temperature and Density in an Argon Microdischarge by Laser Thomson Scattering. Applied Physics Letters. 2008, vol. 92, iss. 22, p. 221507. doi: 10.1063/1.2939437

13. Gessel A. F. H., Carbone E. A. D., Bruggeman P. J., van der Mullen J. J. A. M. Laser Scattering on an Atmospheric Pressure Plasma Jet: Disentangling Rayleigh, Raman and Thomson Scattering. Plasma Sources Science and Technology. 2012, vol. 21, no. 1, p. 015003. doi: 10.1088/0963-0252/21/1/015003

14. Qian M., Ren C., Wang D., Feng Y., Zhang J. Atmospheric Pressure Cold Argon/Oxygen Plasma Jet Assisted by Preionization by Syringe Needle Electrode. 2012 Abstracts IEEE Intern. Conf. on Plasma Science. Edinburgh, UK, 08–13 July 2012. IEEE, 2012, pp. 5B-9–5B-9. doi: 10.1109/PLASMA.2012.6383989

15. Qiuping Zhou, Cheng Cheng, Yuedong Meng. Electron Density and Temperature Measurement by Stark Broadening in a Cold Argon Arc-Plasma Jet at Atmospheric Pressure. Plasma Science and Technology. 2009, vol. 11, no. 5, p. 560. doi: 10.1088/1009-0630/11/5/09

16. Nikiforov A. Yu., Leys Ch., Gonzalez M. A., Walsh J. L. Electron Density Measurement in Atmospheric Pressure Plasma Jets: Stark Broadening of Hydrogenated and Non-Hydrogenated Lines. Plasma Sources Science and Technology. 2015, vol. 24, no. 3, p. 034001. doi: 10.1088/0963-0252/24/3/034001

17. Shneider M. N., Miles R. B. Microwave Diagnostics of Small Plasma Objects. J. Appl. Phys. 2005, vol. 98, iss. 3, p. 033301. doi: 10.1063/1.1996835

18. Sharma A., Slipchenko M. N., Shneider M. N., Wang X., Rahman K. A., Shashurin A. Counting the Electrons in a Multiphoton Ionization by Elastic Scattering of Microwaves. Scientific Reports. 2018, vol. 8, art. num. 2874. doi: 10.1038/s41598-018-21234-y

19. Wang X., Stockett P., Jagannath R., Bane S., Shashurin A. Time-Resolved Measurements of Electron Density in Nanosecond Pulsed Plasmas Using Microwave Scattering. Plasma Source Sci. Technol. 2018, vol. 27, no. 7, art. num. 07LT02. doi: 10.1088/1361-6595/aacc06

20. Xingxing Wang, Apoorv Ranjan, Shneider M. N., Shashurin A. Thomson Microwave Scattering for Electron Number Density Diagnostics of Miniature Plasmas at Low Pressure. American Institute of Aeronautics and Astronautics (AIAA). Dallas, Texas, 17–21 June 2019. doi: 10.2514/6.2019-3250

21. Wang X., Shashurin A. Study of Atmospheric Pressure Plasma Jet Parameters Generated by DC Voltage Driven Cold Plasma Source. J. Appl. Phys. 2017, vol. 122, iss. 6, art. num. 063301. doi: 10.1063/1.4986636

22. Townes C. H., Schawlow A. L. Microwave Spectroscopy. New York, Dover Publication, 1975.

23. Gordy W., Smith W. V., Trambarulo R. F. Microwave spectroscopy. New York, John Wiley & Sons, 1953, 446 p.

24. Mett R. R., Sidabras J. W., Golovina I. S., Hyde J. S. Dielectric Microwave Resonators in TE011 Cavities for Electron Paramagnetic Resonance Spectroscopy. Review of Scientific Instruments. 2008, vol. 79, iss. 9, art. num. 094702. doi: 10.1063/1.2976033

25. Beckers J., van de Ven T., van der Horst R., Astakhov D., Banine V. EUV-Induced Plasma: A Peculiar Phenomenon of a Modern Lithographic Technology. Appl. Sci. 2019, vol. 9, iss. 14, art. num. 2827. doi: 10.3390/app9142827

26. Agdur B., Enander B. Resonances of a Microwave Cavity Partially Filled with a Plasma. J. of Applied Physics. 1962, vol. 33, iss. 2, pp. 575–581. doi: 10.1063/1.1702469

27. Townes C. H., Schawlow A. L. Microwave Spectroscopy. New York, Dover Publication, 1975, 720 p.

28. Li J., Astafiev A. M., Kudryavtsev A. A., Yuan C., Zhou Z., Wang X. The Possibility of Measuring Electron Density of Plasma at Atmospheric Pressure by a Microwave Cavity Resonance Spectroscopy. IEEE Transactions on Plasma Science. 2021, vol. 49, iss. 3, pp. 1001–1008. doi: 10.1109/TPS.2021.3050110

29. Brandt A. A. Issledovanie dielektrikov na sverkhvysokikh chastotakh [Investigation of dielectrics at microwave frequencies]. Moscow, Phyzmatgiz, 1963, 404 p. (In Russ.)

30. Golant V. E. Sverkhvysokochastotnye metody issledovaniya plazmy [Microwave Methods for Plasma Research]. Moscow, Nauka, 1968, 110 p.

31. Raizer Y. P. Gas Discharge Physics. New York, Springer-Verlag, 1991, 449 p.

32. Ginzburg V. L. The Propagation of Electromagnetic Waves in Plasmas. Oxford, Pergamon Press, 1970, 615 p.

33. Pozar D. M. Microwave Engineering. 3rd ed. John Wiley & Sons Inc., 2005, 700 p.


Review

For citations:


Astafiev A.M., Altmark A.M., Lesiv N.A., Chirtsov A.S. Diagnostics of Atmospheric Plasma Jets of Helium and Argon Barrier Discharge in a Cylindrical Microwave Cavity Resonator. Journal of the Russian Universities. Radioelectronics. 2023;26(3):122-135. (In Russ.) https://doi.org/10.32603/1993-8985-2023-26-3-122-135

Views: 292


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1993-8985 (Print)
ISSN 2658-4794 (Online)