Preview

Journal of the Russian Universities. Radioelectronics

Advanced search

Transistors for Solid-State Microwave Switches (A Review)

https://doi.org/10.32603/1993-8985-2023-26-3-6-31

Abstract

Introduction. The characteristics of solid-state microwave switches are subject to different requirements depending on the application area and technical problems to be solved. No versatile solution exists that could satisfy all requirements at once. The desire to improve the parameters of switches has led to the emergence of devices based on various technologies. In order to elucidate the current trends and future prospects in the field of switch technologies, semiconductor devices that form the basis of switch circuits should be considered.
Aim. To review transistor types used in solid-state switches.
Materials and methods. The search and selection of literature sources for review was based on the chronological principle. The search depth for considering the parameters of finished components was no more than 10 years, for considering technologies and structural solutions – more than 10 years. This choice was explained by our desire to trace the history of development and approaches to the creation of semiconductor devices that have led to the emergence of the modern component base. The final array of sources comprised scientific publications presenting factual information on the objects under consideration.
Results. The types, structures, materials, characteristics and manufacturing technologies of transistors used in switches are considered. The achievable parameters of the switches based on the considered devices are presented.
Conclusion. The choice of a particular transistor type for switches depends on the requirements for the parameters and performance characteristics of the final device. At present, transistor solutions for switches are dominated by field-effect transistors (FETs) of various types: GaAs and GaN transistors with a high electron mobility (HEMT) and Si CMOS FETs implemented by standard as well as silicon-on-insulator and silicon-on-sapphire technologies. The conducted literature review has revealed prospects for the development of technologies based on BiCMOS heterojunction bipolar transistors.

About the Authors

Elena M. Torina
"Radiocomp"; National Research University "MPEI"
Russian Federation

Elena M. Torina, Cand. Sci. (Eng.) (2016), Associate Professor of the Department of Radio Signal Generation and Processing of NRU "MPEI"

14, Krasnokazarmennaya St., Moscow 111250;

Senior Researcher of Radiocomp LLC.

The author of  more than 20 scientific pa pers. Area of  expertise: radiophysics and electronics; radio signals  oscillators.



Victor N. Kochemasov
"Radiocomp"
Russian Federation

Victor N. Kochemasov, Cand. Sci. (Eng.) (1976), General  Director of Radiocomp LLC

42, Volgogradsky Ave., Moscow 109316.

Author of over 150 scientific papers, including four  monographs and over forty copyright certificates for  inventions. Area of expertise: radio engineering; devices  for the generation and processing of radio signals;  microwave filters; synthesizers of frequencies and  signals.



Ansar R. Safin
"Radiocomp"; National Research University "MPEI"; Kotel'nikov Institute of Radioengineering and Electronics RAS
Russian Federation

Ansar R. Safin, Cand. Sci. (Eng.) (2014), Head of the Department of Radio Signal Generation and Processing, NRU "MPEI"

14, Krasnokazarmennaya St., Moscow 111250;

Senior Researcher at the Institute of Radio Technologies  and Electronics of the Russian Academy of Science n. a.  V. A. Kotelnikov;

Head of the Department of Radiocomp  LLC.

The author of more than 50 scientific papers. Area of  expertise: radiophysics and electronics; physics of  magnetic phenomena; spintronics.



References

1. Hindle P. The State of RF and Microwave Switches. Microwave J. 2010, vol. 53, no. 11, pp. 20–36.

2. Kochemasov V., Dinges S., Shadsky V. SolidState Microwave Switches of Medium and High Power. Pt. 1. Electronics: Science, Technology, Business. 2019, no. 8, pp. 108–113. doi: 10.22184/1992-4178.2019.189.8.108.112 (In Russ.)

3. Kochemasov V., Dinges S., Shadsky V. SolidState Microwave Switches of Medium and High Power. Pt. 2. Electronics: Science, Technology, Business. 2019, no. 9, pp. 116–131. doi: 10.22184/1992-4178.2019.190.9.116.130 (In Russ.)

4. Kochemasov V., Dinges S., Shadsky V. SolidState Microwave Switches of Medium and High Power. Pt. 3. Electronics: Science, Technology, Business. 2019, no. 10, pp. 82–95. doi: 10.22184/1992-4178.2019.191.10.82.94 (In Russ.)

5. Kochemasov V., Dinges S., Shadsky V. SolidState Microwave Switches of Medium and High Power. Pt. 4. Electronics: Science, Technology, Business. 2020, no. 1, pp. 142–151. doi: 10.22184/1992-4178.2020.192.1.142.151 (In Russ.)

6. Torina E. M., Kochemasov V. N., Safin A. R. Switching pin-diodes. SHF Electronics. 2021, no. 4, pp. 32–40. (In Russ.)

7. Kochemasov V., Safin A., Dinges S. Solid State Microwave Switches with High Switching Speed. Pt. 1. Electronics: Science, Technology, Business. 2020, no. 10, pp. 70–82. doi: 10.22184/1992-4178.2020.201.10.70.82 (In Russ.)

8. Kochemasov V., Safin A., Dinges S. Solid State Microwave Switches with High Switching Speed. Pt. 2. Electronics: Science, Technology, Business. 2021, no. 1, pp. 98–109. doi: 10.22184/1992-4178.2021.202.1.98.108 (In Russ.)

9. Kochemasov V., Safin A., Dinges S. Solid State Microwave Switches with High Switching Speed. Pt. 3. Electronics: Science, Technology, Business. 2021, no. 3, pp. 108–122. doi: 10.22184/1992-4178.2021.204.3.108.122 (In Russ.)

10. Kochemasov V., Safin A., Dinges S. Solid State Microwave Switches with High Switching Speed. Pt. 4. Electronics: Science, Technology, Business. 2021, no. 4, pp. 104–115. doi: 10.22184/1992-4178.2021.205.4.104.115 (In Russ.)

11. Kochemasov V., Maystrenko A. Microwave Switches Based on MEMS. Microwave Electronics. 2016, no. 1, pp. 36–42. (In Russ.)

12. El-Hinnawy N., Slovin G., Rose J., Howard D. A 25 THz FCO (6.3 fs RON* COFF) Phase-Change Material RF Switch Fabricated in a High Volume Manufacturing Environment with Demonstrated Cycling > 1 Billion Times. IEEE/MTT-S Intern. Microwave Symp. (IMS). Los Angeles, USA, 4–6 Aug. 2020. Piscataway, IEEE, 2020, pp. 45–48. doi: 10.1109/IMS30576.2020.9223973

13. Berezniak A. F., Korotkov A. S. Solid-State Microwave Switches: Circuitry, Manufacturing Technologies and Development Trends. Review (part 1). Radioelectronics and Communications Systems. 2013, vol. 56, no. 4, pp. 159–177. doi: 10.3103/S0735272713040018

14. Kochemasov V., Safin A., Dinges S. Antenna Switches. Pt. 1. Electronics: Science, Technology, Business. 2022, no. 7, pp. 102–115. (In Russ.)

15. Kochemasov V., Safin A., Dinges S. Antenna Switches. Pt. 2. Electronics: Science, Technology, Business. 2022, no. 8, pp. 86–99. doi: 10.22184/1992-4178.2022.219.8.86.99 (In Russ.)

16. Kochemasov V., Safin A., Dinges S. Antenna Switches. Pt. 3. Electronics: Science, Technology, Business. 2022, no. 9, pp. 90–97. doi: 10.22184/1992-4178.2022.220.9.90.96 (In Russ.)

17. Kochemasov V., Safin A., Dinges S. Antenna Switches. Pt. 4. Electronics: Science, Technology, Business. 2022, no. 10, pp. 76–91. doi: 10.22184/1992-4178.2022.221.10.76.91 (In Russ.)

18. Zuleeg R., Notthoff J. K., Lehovec K. Femtojoule High Speed Planar GaAs E-JFET logic. IEEE Transactions on Electron Devices. 1978, vol. 25, no. 6, pp. 628–639.

19. Zolper J. C., Hietala V. M., Housel M. S. Comparison of GaAs JFETs to MESFETs for HighTemperature Operation. Sandia National Lab. (SNLNM). 1996, no. SAND-96-1418C, p. CONF-9606159-6.

20. Alexandrov R. Microwave Monolithic Integrated Circuits: An Inside View. Components and Technologies. 2005, no. 53, pp. 174–182. (In Russ.)

21. Mimura T. The Early History of the High Electron Mobility Transistor (HEMT). IEEE Transactions on Microwave Theory and Techniques. 2002, no. 50, pp. 780–782.

22. Mimura T., Hiyamizu S., Fujii T., Nanbu K. A New Field-Effect Transistor with Selectively Doped GaAs/n–AlxGa1–xAs Heterojunctions. Japanese J. of Applied Physics. 1980, vol. 19, no. 5, pp. 225–227. doi: 10.1143/JJAP.19.L225

23. An D., Lee B. H., Lim B. O., Lee M. K. High Switching Performance 0.1-μm Metamorphic HEMTs for low Conversion Loss 94-GHz Resistive Mixers. IEEE Electron Device Let. 2005, vol. 26, no. 10, pp. 707–709. doi: 10.1109/LED.2005.856013

24. Denisenko V. Modeling MOS Transistors. Methodological Aspect. Components and Technologies. 2004, no. 43, pp. 56–61. (In Russ.)

25. Kokolov A. A., Babak L. I. A Technique for Constructing a Small-Signal Model of a Microwave Transistor with High Electron Mobility. Reports of the Tomsk State University of Control Systems and Radioelectronics. 2010, vol. 22, no. 2–1, pp. 153–156. (In Russ.)

26. Angelov I., Bengtsson L., Garcia M. Extensions of the Chalmers Nonlinear HEMT and MESFET model. IEEE Transactions on Microwave Theory and Techniques. 1996, vol. 44, no. 10, pp. 1664–1674.

27. Lazarev A. V., Rakhimov S. K. Application of GaAs HEMT Technology for the Development of MMIS LNA. Innovations. The Science. Education. 2021, no. 33, pp. 1376–1381. (In Russ.)

28. Kameche M., Drozdovski N. V. GaAs-, InPand GaN HEMT-Based Microwave Control Devices: What is Best and Why. Microwave J. 2005, vol. 48, no. 5, pp. 164–173.

29. Moore A., Jimenez J. GaN RF Technology for Dummies. TriQuint Special Edition. 2015, vol. 111, p. 5774.

30. Thome F., Ture E., Brückner P., Rüdiger Q. WBand SPDT Switches in Planar and Tri-Gate 100-nm Gate-Length GaN-HEMT Technology. 11th German Microwave Conf. Piscataway, IEEE, 2018, pp. 331–334. doi: 10.23919/GEMIC.2018.8335097

31. Jie M., Fei Y., HuaiYu T. Millimeter-Wave SPDT Switch MMICs With Travelling Wave Concept. IEEE 5th Intern. Conf. on Integrated Circuits and Microsystems. Piscataway, IEEE, 2020, pp. 263–266. doi: 10.1109/ICICM50929.2020.9292161

32. Thome F., Ambacher O. Highly Isolating and Broadband Single-Pole Double-Throw Switches for Millimeter-Wave Applications up to 330 GHz. IEEE Transactions on Microwave Theory and Techniques. 2017, vol. 66, no. 4, pp. 1998–2009. doi: 10.1109/TMTT.2017.2777980

33. Meng F., Ma K., Yeo K. S. 2.3 A 130-to- 180GHz 0.0035 mm 2 SPDT Switch with 3.3 dB Loss and 23.7 dB Isolation in 65nm Bulk CMOS. IEEE Intern. Solid-State Circuits Conf. Digest of Technical Papers. Piscataway, IEEE, 2015, pp. 1–3. doi: 10.1109/isscc.2015.7062852

34. Kelly D., Brindle C., Kemerling C., Stuber M. The State-of-the-Art of Silicon-on-Sapphire CMOS RF switches. IEEE Compound Semiconductor Integrated Circuit Symp. 2005. Piscataway, IEEE, 2005, pp. 200–203. doi: 10.1109/CSICS.2005.1531812

35. Simonen P., Heinonen A., Kuulusa M., Nurmi J. Comparison of bulk and SOI CMOS Technologies in a DSP Processor Circuit Implementation. ICM 2001 Proc. The 13th Intern. Conf. on Microelectronics. Piscataway, IEEE, 2001, pp. 107–110. doi: 10.1109/ICM.2001.997499

36. Nakamura T., Matsuhashi H., Nagatomo Y. Silicon on Sapphire (SOS) Device Technology. Oki Technical Review. 2004, vol. 71, no. 4, pp. 66–69.

37. Repin V. V., Mukhin I. I., Drozdetsky M. G., Shnitnikov A. S. Designing Microwave Range Mop Switches with a High Level of Decoupling // Microwave Engineering and Telecommunication Technologies (KryMiKo'2015). 2015, pp. 125–126. (In Russ.)

38. Sekar V., Cheng C.C., Whatley R., Zeng Ch., Zeng A., Genc A., Ranta T., Rotella F. Comparison of Substrate Effects in Sapphire, Trap-Rich and High Resistivity Silicon Substrates for RF-SOI Applications. IEEE 15th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems. Piscataway, IEEE, 2015, pp. 37–39.

39. Petrosyants K. O., Sambursky L. M., Kharitonov I. A., Yatmanov A. P. A Compact Macromodel of SOI/SOS MOS Transistors That Takes into Account Radiation Effects. Electronics. 2011, no. 1 (87), pp. 20–28. (In Russ.)

40. Metelkin I. O., Usachev N. A., Yelesin V. V. Model of an Isolated MOS Transistor for Designing Microwave Signal Switches. SHF-technics and telecommunication technologies (KryMiKo'2015). 2015, pp. 111–112. (In Russ.)

41. Li C., Wang M., Chi Т., Kumar A. 5G mmWave Front-End-Module Design with Advanced SOI Process. IEEE 12th Intern. Conf. on ASIC. Piscataway, IEEE, 2017, pp. 1017–1020. doi: 10.1109/ASICON.2017.8252651

42. Uzunkol M., Rebeiz G. M. 140–220 GHz SPST and SPDT Switches in 45 nm CMOS SOI. IEEE Microwave and Wireless Components Let. 2012, vol. 22, no. 8, pp. 412–414.

43. Meng F., Ma K., Yeo K. S. 2.3 A 130-to-180GHz 0.0035 mm 2 SPDT Switch with 3.3 dB loss and 23.7 dB Isolation in 65nm Bulk CMOS. IEEE Intern. Solid-State Circuits Conf. Digest of Technical Papers. Piscataway, IEEE, 2015, pp. 1–3. doi: 10.1109/isscc.2015.7062852

44. Chen L., Ge Z., Sun Y., Zhu X. A W-Band SPDT Switch with 15-dBm P1dB in 55-nm Bulk CMOS. IEEE Microwave and Wireless Components Let. 2022, vol. 32, no. 7, pp. 879–882.

45. Ning R., Liu T., Shen J. Modeling and Analysis of Stacked Depletion-Mode NMOS Transistors for RF Switch Applications. IEEE Intern. Conf, on Electro Information Technology. Piscataway, IEEE, 2017, pp. 34–38. doi: 10.1109/EDTM.2017.8000254

46. Schmid R. L., Ulusoy A. C., Song P., Cressler J. D. A 94 GHz, 1.4 dB Insertion Loss Single-Pole Double-Throw Switch Using Reverse-Saturated SiGe HBTs. IEEE Microwave and Wireless Components Let. 2014, vol. 24, no. 1, pp. 56–58. doi: 10.1109/LMWC.2013.2288276

47. Kovalev, A. N. Bipolar Heterotransistors Based on SiGe and aIIIbv. News of Higher Educational Institutions. Materials of Electronic Engineering. 2008, no. 2, pp. 4–21. (In Russ.)

48. Mukhin I. I., Repin V. V. Application of SiGe BiCMOS Technology to Build a MIS Discrete Phase Shifter Using the Principle of Vector Addition. Microelectronics Microwave: Proc. of All-Russian Conf. Vol. 2. St Petersburg, Publishing House of SPbETU, 2012, pp. 120–122. (In Russ.)

49. Dong H., Chen J., Hou D. A Compact Bidirectional K and Ka Band SPDT in 0.13μm SiGe BiCMOS Process. IEEE Intern. Symp. on RadioFrequency Integration Technology. Piscataway, IEEE, 2018, pp. 1–3.

50. Avenier G., Chevalier P., Troillard G. et al. 0.13 μm SiGe BiCMOS Technology for mm-Wave Applications. IEEE Bipolar/BiCMOS Circuits and Technology Meeting. Piscataway, IEEE, 2008, pp. 89–92. doi: 10.1109/BIPOL.2008.4662719

51. Ulusoy A. C., Song P., Schmid R. L. et al. A low-loss and High Isolation D-band SPDT Switch Utilizing Deep-Saturated SiGe HBTs. IEEE Microwave and Wireless Components Let. 2014, vol. 24, no. 6, pp. 400–402. doi: 10.1109/LMWC.2014.2313529


Review

For citations:


Torina E.M., Kochemasov V.N., Safin A.R. Transistors for Solid-State Microwave Switches (A Review). Journal of the Russian Universities. Radioelectronics. 2023;26(3):6-31. (In Russ.) https://doi.org/10.32603/1993-8985-2023-26-3-6-31

Views: 467


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1993-8985 (Print)
ISSN 2658-4794 (Online)