Preview

Journal of the Russian Universities. Radioelectronics

Advanced search

Photo-sensitive Structures with Cascade Radiation Concentrators Based on Colloidal Quantum Dots of Metal Chalcogenides

https://doi.org/10.32603/1993-8985-2023-26-2-78-88

Abstract

Introduction. The problem of increasing the efficiency of existing photodetectors and creating their new types attracts much research attention. Among new photodetector types are photosensitive structures based on cascade concentrators, whose operational principle involves the absorption of optical radiation followed by its reemission at a longer wavelength and radiation concentration onto a highly efficient small-area photodetector. The absorption and re-emission spectra of each cascade layer depend on the characteristics of the material used. Сolloidal quantum dots are among the most promising materials for cascade layers due to their manufacturing technology, which provides for accurate control over the photoluminescence maximum position. It seems highly relevant to develop and to study photosensitive structures with cascade concentrators of various shapes based on CdS, CdSe/ZnS, and PbS colloidal quantum dots.
Aim. To develop photosensitive structures with a wide-range sensitivity spectrum based on concentrators containing arrays of metal chalcogenide CQDs and to study their characteristics.
Materials and methods. Cascade photosensitive structures were manufactured based on layers made of polymethyl methacrylate and layers of colloidal quantum dots embedded in a polystyrene matrix.
Results. Three-layer concentrators were manufactured with different colloidal quantum dots in each concentrator layers. A 22 % increase in the output power was observed for a three-layer cascade structure based on different cascade layer materials compared to a similar structure using a single layer concentrator.
Conclusion. The conducted studies showed an increase in the efficiency of photosensitive structures with a cascade concentrator based on colloidal quantum dots of various types (CdS, CdSe/ZnS, and PbS) in the cascade layers.

About the Authors

I. I. Mikhailov
Saint Petersburg Electrotechnical University
Russian Federation

Ivan I. Mikhailov, Master in Electronics and Nanoelectronics (2013), Assistant of the Department of Photonics. The author of 50 scientific publications. Area of expertise: electronics; photonics; solar energy; organic light-emitting diodes; colloidal quantum dots.

197022, St Petersburg, Professor Popov St., 5 F



I. A. Lamkin
Saint Petersburg Electrotechnical University
Russian Federation

Ivan A. Lamkin, Cand. Sci. (Eng.) (2015), Associate Professor of the Department of Photonics. The author of 85 scientific publications. Area of expertise: electronics; photonics; solar energy; physics and optics of semiconductors; metal-semiconductor contacts; vacuum technology.

197022, St Petersburg, Professor Popov St., 5 F



A. E. Degterev
Saint Petersburg Electrotechnical University
Russian Federation

Alexander E. Degterev, Master in Electronics and Nanoelectronics (2020), Postgraduate Student, Assistant of the Department of Photonics. The author of 29 scientific publications. Area of expertise: electronics; photonics; solar energy.

197022, St Petersburg, Professor Popov St., 5 F



M. M. Romanovich
Saint Petersburg Electrotechnical University
Russian Federation

Maria M. Romanovich, Master in Electronics and Nanoelectronics (2020), Postgraduate Student, Assistant of the Department of Photonics. The author of 19 scientific publications. Area of expertise: electronics; photonics; agrophotonics.

197022, St Petersburg, Professor Popov St., 5 F



M. D. Pavlova
Saint Petersburg Electrotechnical University
Russian Federation

Marina D. Pavlova, Master in Electronics and Nanoelectronics (2019). Postgraduate Student of the Department of Photonics. The author of 15 scientific publications. Area of expertise: electronics; photonics; solar energy organic photosensitive structures.

197022, St Petersburg, Professor Popov St., 5 F



M. A. Kurachkina
University of Applied Sciences Brandenburg
Germany

Marharyta A. Kurachkina, PhD (Phys.-Math.) (2017), Researcher of the Department of Technology. The author of 20 scientific publications. Area of expertise: photonics; microfluidics; composites; sensors; laser surface modification.

14770, Brandenburg an der Havel, Magdeburger St., 50



S. A. Tarasov
Saint Petersburg Electrotechnical University
Russian Federation

Sergey A. Tarasov, Dr Sci. (Eng.) (2016), Head of the Department of Photonics. The author of more than 160 scientific publications. Area of expertise: electronics; photonics; solar energy; physics and optics of semiconductors; light-emitting and photosensitive devices

197022, St Petersburg, Professor Popov St., 5 F



U. A. Kuzmina
Saint Petersburg Electrotechnical University
Russian Federation

Ulyana A. Kuzmina, Master in Electronics and Nanoelectronics (2021), Postgraduate Student of the Department of Photonics. The author of 8 scientific publications. Area of expertise: electronics; photonics; solar energy organic photosensitive structures.

197022, St Petersburg, Professor Popov St., 5 F



References

1. Pavlova M. D., Degterev A. E., Lamkin I. A., Tarasov S. A. Influence of the Formation Parameters of Phthalociane: Fullerene Nanocomposite Layer on the Photoelectric Characteristics of ZnPc:C60/C60 Structures. Semiconductors. 2020, vol. 54, no. 13, pp. 1800–1804. doi:10.1134/S1063782620130114

2. Degterev A. E., Romanovich M. M., Mikhailov I. I., Lamkin I. A., Tarasov S. A. Ways to Slow Down the Degradation and Enhance the Stability of Perovskite Solar Cells. Proc. of the 2021 IEEE Conf. of Russ. Young Researchers in Electrical and Electronic Engineering (ElConRus 2021), Saint Petersburg, 26–29 Jan. 2021, pp. 1301–1304. doi:10.1109/ElConRus51938.2021.9396607

3. Charles U.A., Ibrahim M.A., Teridi M.A.M. Electrodeposition of Organic–Inorganic Tri-Halide Perovskites Solar Cell. J. of Power Sources. 2018, vol. 378, pp. 717–731. doi:10.1016/j.jpowsour.2017.12.075

4. Farooq W., Musarat M. A., Iqbal J., Kazmi S. A. A., Khan A. D., Alaloul W. S., Baarimah A. O., Elnaggar A. F., Ghoneim S. S. M., Ghaly N. R. Optimized Thin-Film Organic Solar Cell with Enhanced Efficiency. Sustainability. 2021, vol. 13, no. 23, p. 13087. doi:10.3390/su132313087

5. Kandi D., Mansingh S., Behera A., Parida K. Calculation of Relative Fluorescence Quantum Yield and Urbach Energy of Colloidal CdS QDs in Various Easily Accessible Solvents. J. of Luminescence. 2021, vol. 231, p. 117792. doi:10.1016/j.jlumin.2020.117792

6. Yifat Y., Ackerman M., Guyot-Sionnest P. MidIR Colloidal Quantum Dot Detectors Enhanced by Optical Nano-Antennas. Applied Physics Let. 2017, vol. 110, no. 4, p. 041106. doi:10.1063/1.4975058

7. Kojima T., Sugimoto H., Fujii M. Size-Dependent Photocatalytic Activity of Colloidal Silicon Quantum Dot. Journal of Physical Chemistry C. 2018, vol. 122, no. 3, pp. 1874–1880. doi:10.1021/acs.jpcc.7b10967

8. Gupta P. K., Pandey U., Pal B. N., Pandey A. Low-Cost Solution-Processed MoS2 Quantum DotsBased Deep UV Photodetector for Monitoring Disinfection. IEEE Transactions on Electron Devices. 2022, vol. 69, no. 5, pp. 2474–2480. doi:10.1109/TED.2022.3161885

9. Degterev A. E., Mikhailov I. I., Lamkin I. A., Tarasov S. A. Organic Light-Emitting Diodes with Colloidal Quantum Dots in the Active Layer. J. of Physics: Conf. Series: 6th Intern. School and Conf. "Saint Petersburg OPEN 2019": Optoelectronics, Photonics, Engineering and Nanostructures, Saint Petersburg, 22– 25 Apr. 2019, vol. 1410, p. 012115. doi:10.1088/1742-6596/1410/1/012115

10. Nikolenko L.M., Razumov V.F. Colloidal Quantum Dots in Solar Cells. Russian Chemical Reviews. 2013, vol. 82, no. 5, pp. 429–448. doi:0.1070/RC2013v082n05ABEH004337

11. Okoye N., Goldberg D., Husaini S., Fein Y., Menon V.M. Colloidal Quantum Dot Based Photonic Devices. IEEE Winter Topicals, WTM 2011, Keystone, CO, 10–12 Jan. 2011, pp. 51–52. doi:10.1109/PHOTWTM.2011.5730041

12. Korbutyak D. V., Kalytchuk S. M., Geru I. I. Colloidal CdTe and CdSe Quantum Dots: Technology of Preparing and Optical Properties. J. of Nanoelectronics and Optoelectronics. 2009, vol. 4, no. 1, pp. 174–179. doi:10.1166/jno.2009.1019

13. Matyushkin L. B., Moshnikov V. A. Tekhnologiya polucheniya kolloidnyh kvantovyh tochek, plazmonnyh nanochastic i gibridnyh struktur na ih osnove [Technology for Obtaining Colloidal Quantum Dots, Plasmonic Nanoparticles and Hybrid Structures Based on Them]. Proc. of the 5th Intern. Conf. of the CIS Countries "Sol-gel Synthesis and Study of Inorganic Compounds, Hybrid Functional Materials and Disperse Systems", St Petersburg, 27–31 Aug. 2018, pp. 37–38. (In Russ.)

14. Chatten A. J., Barnham K. W. J., Buxton B. F., Ekins-Daukesa N. J., Malikc M. A. A New Approach to Modelling Quantum Dot Concentrators. Solar Energy Materials and Solar Cells. 2003, vol. 75, no. 3–4, pp. 363–371.

15. Cao X., Z. Zheng, Zhang Y., Gu G., Miao J., Huang R., Hou D., Tian Y., Zhang X. HighPerformance Luminescent Solar Concentrators Based on the Core/Shell CdSe/ZnS Quantum Dots Composed into Thiol-Ene Polymer. J. of Luminescence. 2022, vol. 252, p. 119368. doi:10.1016/j.jlumin.2022.119368

16. Gallagher S. J., Norton B., Eames P. C. Quantum Dot Solar Concentrators: Electrical Conversion Efficiencies and Comparative Concentrating Factors of Fabricated Devices. Solar Energy. 2007, vol. 81, no. 6, pp. 813–821. doi:10.1016/j.solener.2006.09.011

17. Shamilov R. R., Galyametdinov Yu. G. Kompozity polimetilmetakrilata na osnove kvantovyh tochek CdSe i CdSe/CdS, sintezirovannyh v vodno–etanol'noj srede [Polymethylmethacrylate Composites Based on CdSe and CdSe/CdS Quantum Dots Synthesized in an Aqueous–Ethanol Medium]. Vestnik Kazanskogo tekhnologicheskogo universiteta. 2013, vol. 16, no. 15, pp. 322–324. (In Russ.)

18. Verbunt P. P. C., Debije M. G. Progress in Luminescent Solar Concentrator Research: Solar Energy For The Built Environment. Linköping, Electronic Conf. Proc. 2011, vol. 56, pp. 2751–2758. doi:10.3384/ecp110572751


Review

For citations:


Mikhailov I.I., Lamkin I.A., Degterev A.E., Romanovich M.M., Pavlova M.D., Kurachkina M.A., Tarasov S.A., Kuzmina U.A. Photo-sensitive Structures with Cascade Radiation Concentrators Based on Colloidal Quantum Dots of Metal Chalcogenides. Journal of the Russian Universities. Radioelectronics. 2023;26(2):78-88. (In Russ.) https://doi.org/10.32603/1993-8985-2023-26-2-78-88

Views: 388


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1993-8985 (Print)
ISSN 2658-4794 (Online)