Preview

Journal of the Russian Universities. Radioelectronics

Advanced search

Research into the Properties of a Composite Material for Microwave Applications Based on PTFE with Different Concentrations and Particle Sizes of Ceramic Filler

https://doi.org/10.32603/1993-8985-2023-26-2-16-24

Abstract

Introduction. The technology of printed circuit boards (PCBs) is widely used in modern electronic instrumentation. PCBs for the microwave frequency range are made based on foil composite materials, in particular, polytetrafluoroethylene (PTFE). At the moment, there is no domestic production of such a class of materials. Information concerning foreign manufacturing technologies in this field and the influence of the filler on the characteristics of the composite material remains confidential. Therefore, research into the properties of composite materials for microwave applications with properties similar to foreign analogues seems relevant.
Aim. Experimental determination of the dependence of the electrical and mechanical properties of a composite material based on polytetrafluoroethylene depending on the concentration and size of the titanium dioxide fraction.
Materials and methods. Experimental determination of the dependence of the electrical and mechanical properties of a composite material based on PTFE depending on the concentration and size of the titanium dioxide fraction.
Results. The results of an experimental study of the mechanical properties and microwave parameters of experimental samples of composite material based on PTFE are presented, namely: composite material with 10 % content of ceramic titanium dioxide powders (fraction size 10, 49 and 126 µm); composite material with 5, 10 and 15 % content of ceramic titanium dioxide powder (fraction size 49 µm for polytetrafluoroethylene and 126 µm for titanium dioxide).
Conclusion. The results obtained demonstrate prospects for using compositions based on PTFE and titanium dioxide powder as a basis for microwave materials. A correlation was established between the percentage of the introduced ceramic filler and the microwave parameters of the material. The studies demonstrated a slight difference in the microwave properties of the manufactured composite material samples with a different ratio between the particle sizes of titanium dioxide and PTFE. However, a significant decrease in their mechanical properties was observed.

About the Authors

A. B. Kozyrev
Saint Petersburg Electrotechnical University
Russian Federation

Andrey B. Kozyrev, Dr Sci. (Eng.) (1990), Professor (1992) of the Department of Physical Electronics and Technology. The author of more than 200 scientific publications. Area of expertise: superconductivity, ferroelectricity, ion-plasma technology, microwave devices, antennas.

197022, St Petersburg, Professor Popov St., 5 F



A. E. Komlev
Saint Petersburg Electrotechnical University
Russian Federation

Andrey E. Komlev, Cand. Sci. (Eng.) (2011), Associate Professor of the Department of Physical Electronics and Technology. The author of more than 60 scientific publications. Area of expertise: technology of electronic equipment materials, plasma.

197022, St Petersburg, Professor Popov St., 5 F



A. M. Sosunov
Saint Petersburg Electrotechnical University
Russian Federation

Alexey M. Sosunov, Master in Electronics and Nanoelectronics (2020), Postgraduate Student of the Department of Physical Electronics and Technology. The author of 7 scientific publications. Area of expertise: microwave devices, methods of measuring microwave parameters.

197022, St Petersburg, Professor Popov St., 5 F



A. G. Altynnikov
Saint Petersburg Electrotechnical University
Russian Federation

Andrey G. Altynnikov, Cand. Sci. (Eng.) (2010), Associate Professor of the Department of Physical Electronics and Technology. The author of 68 scientific publications. Area of expertise: nonlinear materials, microwave devices, antennas, thin films.

197022, St Petersburg, Professor Popov St., 5 F



R. A. Platonov
Saint Petersburg Electrotechnical University
Russian Federation

Roman A. Platonov, Cand. Sci. (Eng.) (2018), Associate Professor of the Department of Physical Electronics and Technology. The author of 47 scientific publications. Area of expertise: electrodynamics, microwave devices, antennas.

197022, St Petersburg, Professor Popov St., 5 F



References

1. Zou K., Dan Y., Xu H., Zhang Q., Lu Y., Huang H., He Y. Recent Advances in Lead-Free Dielectric Materials for Energy Storage. Materials Research Bulletin. 2019, vol. 113, pp. 190–201. doi:10.1016/j.materresbull.2019.02.002

2. Shi R., Lou Zh., Chen Sh., Shen G. Flexible and Transparent Capacitive Pressure Sensor with Patterned Microstructured Composite Rubber Dielectric for Wearable Touch Keyboard Application. Science China Materials. 2018, vol. 61, no. 12, pp. 1587–1595.

3. Xie J., Zhu Zh., Tao H., Zhou Sh., Liang Zh., Li Zh., Yao R., Wang Y., Ning H., Peng J. Research Progress of High Dielectric Constant Zirconia-Based Materials for Gate Dielectric Application. Coatings. 2020, vol. 10, no. 7, p. 698. doi:10.3390/coatings10070698

4. Belous A. G., Ovchar O., Durylin D., Valant M. Microwave Composite Dielectrics Based on Magnesium Titanates. J. of the European Ceramic Society. 2007, vol. 27, no. 8–9, pp. 2963–2966. doi:10.1016/j.jeurceramsoc.2006.11.022

5. Castles F., Isakov D., Lui A., Lei Q., Dancer C. E. J., Wang Y., Janurudin J. M., Speller S. C., Grovenor C. R. M., Grant P. S. Microwave Dielectric Characterisation of 3D-Printed BaTiO3/ABS Polymer Composites. Scientific Reports. 2016, vol. 6, no. 1, pp. 1–8. doi:10.1038/srep22714

6. Peng R., Li Y., Lu Y., Yun Y., Du W., Tao Zh., Liao B. High-Performance Microwave Dielectric Composite Ceramics Sintered at Low Temperature without Sintering-Aids. J. of Alloys and Compounds. 2020, vol. 831, p. 154878. doi:10.1016/j.jallcom.2020.154878

7. Nikitin A. A., Nikitin A. A., Mylnikov I. L., Ustinov A. B., Kalinikos B. A. Electromagnonic Crystals Based on Ferrite–Ferroelectric–Ferrite Multilayers. IET Microwaves, Antennas & Propagation. 2020, vol. 14, no. 12, pp. 1304–1309. doi:10.1049/iet-map.2020.0162

8. Paillard M., Bodereau F., Drevon C., Monfraix P., Cazaux J. L., Bodin L., Guyon P. Multilayer RF PCB for Space Applications: Technological and Interconnections Trade-Off. European Microwave Conf. 2005, vol. 3, p. 1642. doi:10.1109/EUMC.2005.1610270

9. Ye Y., Guo T. L. Hole Metallisation Technology for Microwave Printed Circuit Board. Transactions of the IMF. 2009, vol. 87, no. 4, pp. 217–220. doi:10.1179/174591909X438866

10. Fuscaldo W., Maita F., Maiolo L., Beccherelli R., Zografopoulos D. C. Broadband Dielectric Characterization of High-Permittivity Rogers Substrates via Terahertz Time-Domain Spectroscopy in Reflection Mode. Applied Sciences. 2022, vol. 12, no. 16, p. 8259. doi:10.3390/app12168259

11. Peng H., Ren H., Dang M., Zhang Y., Yao X., Lin H. Novel High Dielectric Constant and Low Loss PTFE/CNT Composites. Ceramics International. 2018, vol. 44, no. 14, pp. 16556–16560. doi:10.1016/j.ceramint.2018.06.077

12. Yuan Y., Zhang S. R., Zhou Z. H. MgTiO3 filled PTFE Composites for Microwave Substrate Applications. Materials Chemistry and Physics. 2013, vol. 141, no. 1, pp. 175–179. doi:10.1016/j.matchemphys.2013.04.043

13. Huang A., Kharbas H., Ellingham T., Mi H., Turng L. Sh., Peng X. Mechanical Properties, Crystallization Characteristics, and Foaming Behavior of Polytetrafluoroethylene‐Reinforced Poly (Lactic Acid) Composites. Polymer Engineering & Science. 2017, vol. 57, no. 5, pp. 570–580. doi:10.1002/pen.24454

14. Luukkonen O., Maslovski S. I., Tretyakov S. A. A Stepwise Nicolson–Ross–Weir-based Material Parameter Extraction Method. IEEE Antennas and Wireless Propagation Let. 2011, vol. 10, pp. 1295–1298. doi:10.1109/LAWP.2011.2175897

15. Rothwell E. J., Frasch J. L., Ellison S. M., Chahal P., Ouedraogo R. O. Analysis of the NicolsonRoss-Weir Method for Characterizing the Electromagnetic Properties of Engineered Materials. Progress in Electromagnetics Research. 2016, vol. 157, pp. 31–47. doi:10.2528/PIER16071706


Review

For citations:


Kozyrev A.B., Komlev A.E., Sosunov A.M., Altynnikov A.G., Platonov R.A. Research into the Properties of a Composite Material for Microwave Applications Based on PTFE with Different Concentrations and Particle Sizes of Ceramic Filler. Journal of the Russian Universities. Radioelectronics. 2023;26(2):16-24. (In Russ.) https://doi.org/10.32603/1993-8985-2023-26-2-16-24

Views: 440


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1993-8985 (Print)
ISSN 2658-4794 (Online)