Preview

Journal of the Russian Universities. Radioelectronics

Advanced search

A Dual Ka/Q-Band Reflectarray

https://doi.org/10.32603/1993-8985-2022-25-5-18-31

Abstract

Introduction. Duplex satellite communication is commonly arranged using two spaced frequency bands, with one band receiving and the other band transmitting signals to a satellite. The main task of a communications satellite antenna system consists in providing an identical coverage area across all involved frequency bands, which is often a challenging task for conventional parabolic reflector antennas. Reflectarrays allow an independent control of the reradiated wave phase in spaced frequency bands, which can be used to create efficient multi-band antenna systems for modern communication satellites.

Aim. To develop a Ka/Q-frequency range phase-correcting element and to create on its basis a dual-band reflectarray for operation with orthogonal circular polarizations and identical gains in a given sector of angles in significantly spaced frequency ranges.

Materials and methods. Numerical studies were carried out using the finite element analysis method. Radiation patterns were measured using the near field scanning method.

Results. A single-layer dual-band phase-correcting reflectarray element was developed for operation with orthogonal circular polarizations with low losses and a weak dependence of the relative position of the elements on the phase characteristic. On the basis of the proposed element, a reflectarray consisting of 24 465 two-frequency elements was synthesized and manufactured. The developed prototype of a single-layer dual-band reflectarray demonstrated good characteristics, with the efficiency reaching 56 and 36 % in the Ka- and Q-frequency ranges, respectively, and an almost identical minimum gain in the ±0.75° angle sector.

Conclusion. The research results confirm the potential of the developed reflectarray to successfully replace conventional parabolic reflectors installed both on modern communication satellites and as part of ground-based satellite terminals in the millimeter wavelength range.

About the Authors

S. V. Polenga
Siberian Federal University
Russian Federation

Stanislav V. Polenga, Master's degree in Radio Engineering (2009), senior lecturer at the Department of Radio Engineering

79, Svobodny Ave., Krasnoyarsk 660041



A. A. Erokhin
Siberian Federal University
Russian Federation

Aleksey A. Erokhin, Cand. Sci. (Eng.) (2021), senior lecturer of Department of Radio Engineering

79, Svobodny Ave., Krasnoyarsk 660041



R. O. Ryazantsev
Siberian Federal University
Russian Federation

Roman O. Ryazantsev, Cand. Sci. (Eng.) (2019), Associate Professor at the Department of Radio Engineering

79, Svobodny Ave., Krasnoyarsk 660041



A. D. Poligina
Siberian Federal University
Russian Federation

Anastasia D. Poligina, Master's degree in Radio Engineering (2021)

79, Svobodny Ave., Krasnoyarsk 660041



R. M. Krylov
Siberian Federal University
Russian Federation

Roman M. Krylov, engineer on Design and Engineering of Electronic Equipment (2009), engineer at the Department of Radio Engineering

79, Svobodny Ave., Krasnoyarsk 660041



E. A. Litinskaya
Siberian Federal University
Russian Federation

Elena A. Litinskaya, Master's degree in Radio Engineering (2011), Postgraduate student, senior lecturer at the Department of Radio Engineering

79, Svobodny Ave., Krasnoyarsk 660041



E. R. Gafarov
Siberian Federal University
Russian Federation

Eugeniy R. Gafarov, Cand. Sci. (Eng.) (2021), Assistant Professor of Radio Engineering Department

79, Svobodny Ave., Krasnoyarsk 660041



A. M. Aleksandrin
Siberian Federal University
Russian Federation

Anton M. Aleksandrin, Cand. Sci. (Eng.) (2020), Associate Professor of Department of Radio Engineering

79, Svobodny Ave., Krasnoyarsk 660041



Yu. P. Salomatov
Siberian Federal University
Russian Federation

Yury P. Salomatov, Cand. Sci. (Eng.) (1982), Professor (2013) at the Department of Radio Engineering

79, Svobodny Ave., Krasnoyarsk 660041



I. Yu. Danilov
JSC Academician M. F. Reshetnev Information Satellite Systems
Russian Federation

Igor Yu. Danilov, Cand. Sci. (Eng.) (2017), Head of the Department for the Development and Testing of Antenna-Feeder Devices and High-Frequency Payload Elements

52, Lenina St., Zheleznogorsk 662972



References

1. Polenga S. V., Litinskaya E. A., Salomatov Yu. P., Krylov R. M. Reflectarray Antenna for Bidirectional VSAT Satellite Communication Networks. Achievements of Modern Radioelectronics. 2012, no. 9, pp. 39–42.

2. Polenga S. V., Alexandrin A. M., Salomatov Yu. P., Lemberg K. V., Popovich A. A. Dual Ku/Ka-Band Feed Horn for Satellite Ground Stations. Achievements of modern radioelectronics. 2016, no. 11, pp. 43–47.

3. Martinez-de-Rioja E., Encinar J. A., Florencio R., Boix R. R. Dual Polarized Reflectarray Antenna to Generate Independent Beams in Ku and Ka Bands. 10th European Conf. on Antennas and Propagation, Davos, Switzerland, 10–15 April 2016. Piscataway, IEEE, 2016, pp. 1–5. doi: 10.1109/EuCAP.2016.7481439

4. Martinez-de-Rioja E., Encinar J. A., Pino A., Gonzalez-Valdes B. Design of Bifocal Dual Reflectarray Antennas in Ka-Band to Generate a Multi-Spot Coverage from Geostationary Satellites. 13th European Conf. on Antennas and Propagation, Krakow, Poland, 31 March 2019 – 5 April 2019. Piscataway, IEEE, 2019, pp. 1–5.

5. Arrebola M., Encinar J. A., Barba M. Multifed Printed Reflectarray with Three Simultaneous Shaped Beams for LMDS Central Station Antenna. IEEE Trans. on Antennas and Propagation. 2001, vol. 56, no. 6, pp. 1518–1527. doi: 10.1109/TAP.2008.923360

6. Abdollahvand M., Encinar J. A., Forooraghi K., Atlasbaf Z., Barba M. Single-Layer Dual-Frequency Reflectarray for Ka-Band Antennas. 10th European Conf. on Antennas and Propagation. Davos, Switzerland, 10–15 April 2016. Piscataway, IEEE, 2016, pp. 1–4. doi: 10.1109/EuCAP.2016.7481879

7. Antonov Y. G., Sugak M. I., Ballandovich S. V., Kostikov G. A., Liubina L. M. Design of Wideband Reflectarray Antennas. 14th European Conf. on Antennas and Propagation. Copenhagen, Denmark, 15–20 March 2020. Piscataway, IEEE, 2020, pp. 1–5. doi: 10.23919/EuCAP48036.2020.9135649

8. Ballandovich S. V., Liubina L. M., Sugak M. I. Non-Planar Full-Metal Slot Reflectarray Antenna. 23rd Intern. Microwave and Radar Conf. Warsaw, Poland, 5–8 Oct. 2020. Piscataway, IEEE, 2019, pp. 338–341. doi: 10.23919/MIKON48703.2020.9253864

9. Gao Q., Wang J. Bandwidth Enhancement Element for Linearly Polarized Reflectarray Design in Kuband. 7th IEEE Intern. Symp. on Microwave, Antenna, Propagation and EMC Technologies. Xi'an, China, 24– 27 Oct. 2017. Piscataway, IEEE, 2017, pp. 34–36. doi: 10.1109/MAPE.2017.8250789

10. Hamzavi-Zarghani Z., Atlasbaf Z. A New Broadband Single-Layer Dual-Band Reflectarray Antenna in X- and Ku-Bands. IEEE Antennas and Wireless Propagation Letters. 2015, vol. 14, pp. 602–605. doi: 10.1109/LAWP.2014.2374351

11. Polenga S. V., Erokhin A. A., Krylov R. M., Stankovsky A. V., Litinskaya E. A., Hudonogova A. D., Danilov I. Y., Salomatov Yu. P. A Ka-Band Shaped–Beam Circularly Polarized Reflectarray Antenna. Radiation and Scattering of Electromagnetic Waves, Divnomorskoe, Russia, 24–28 June 2019. Piscataway, IEEE, 2019, pp. 281– 284. doi: 10.1109/RSEMW.2019.8792697

12. Pozar D. M., Targonski S. D., Pokuls R. A Shaped-Beam Microstrip Patch Reflectarray. IEEE Trans. on Antennas and Propagation. 1999, vol. 47, no. 7, pp. 1167–1173. doi: 10.1109/8.785748

13. Florencio R., Encinar J. A., Boix R. R., Losada V., Toso G. Reflectarray Antennas for Dual Polarization and Broadband Telecom Satellite Applications. IEEE Trans. on Antennas and Propagation. 2015, vol. 63, no. 4, pp. 1234–1246. doi: 10.1109/TAP.2015.2391279

14. Shamsaee Malfajani R., Abbasi Arand B. Dualband Orthogonally Polarized Single-Layer Reflectarray Antenna. IEEE Trans. on Antennas and Propagation.2017, vol. 65, no. 11, pp. 6145–6150. doi: 10.1109/TAP.2017.2754459

15. Hasani H., Kamyab M., Mirkamali A. Low Cross-Polarization Reflectarray Antenna. IEEE Trans. on Antennas and Propagation. 2011, vol. 59, no. 5, pp. 1752–1756. doi: 10.1109/TAP.2011.2123071

16. Malfajani R. S., Atlasbaf Z. Design and Implementation of Broadband Single-Layer Reflectarray Antenna with Large-Range Linear Phase Elements. IEEE Antennas and Wireless Propagation Letters. 2012, vol. 11, pp. 1442–1445. doi: 10.1109/LAWP.2012.2228147

17. Pozar D. M., Schaubert D. H. Analysis of an Infinite Array of Rectangular Microstrip Patches with Idealized Probe Feeds. IEEE Trans. on Antennas and Propagation. 1984, vol. 32, pp. 1101–1107. doi: 10.1109/TAP.1984.1143211

18. Pozar D. M. Analysis of an Infinite Phased Array of Aperture Coupled Microstrip Patches. IEEE Trans. on Antennas and Propagation. 1989, vol. 37, pp. 418–425. doi: 10.1109/8.24161

19. Ivanov A. S., Lemberg K. V., Polenga S. V., Krylov R. M., Salomatov Yu. P. Implementation of Antenna Near-Field Scanning without Using Probe Position Sensors. Intern. Siberian Conf. on Control and Communications, Omsk, Russia, 21–23 May 2015. Piscataway, IEEE, 2015, pp. 1–3. doi: 10.1109/SIBCON.2015.7147334.


Review

For citations:


Polenga S.V., Erokhin A.A., Ryazantsev R.O., Poligina A.D., Krylov R.M., Litinskaya E.A., Gafarov E.R., Aleksandrin A.M., Salomatov Yu.P., Danilov I.Yu. A Dual Ka/Q-Band Reflectarray. Journal of the Russian Universities. Radioelectronics. 2022;25(5):18-31. (In Russ.) https://doi.org/10.32603/1993-8985-2022-25-5-18-31

Views: 526


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1993-8985 (Print)
ISSN 2658-4794 (Online)