Preview

Journal of the Russian Universities. Radioelectronics

Advanced search

Application of a Texture Appearance Model for Segmentation of Lung Nodules on Computed Tomography of the Chest

https://doi.org/10.32603/1993-8985-2022-25-3-96-117

Abstract

Introduction. Lung cancer is one of the most critical diseases globally, with more than 1.6 million new cases registered every year. Early detection of lung cancer is essential; therefore, particular attention should be paid to the development of effective diagnostic and therapeutic procedures. Computer processing of CT scans in the course of lung cancer diagnostics involves the following stages: medical image acquisition, pre-processing of medical images, segmentation, and false-positive reduction. Since segmentation is an essential stage in the process of medical image analysis, the development of novel segmentation approaches is attracting much research interest. Model-based segmentation approaches have recently gained in popularity, largely due to their potential to restore lost information.

Aim. To apply a texture appearance model for the segmentation of pulmonary nodules on computed tomography of the chest.

Materials and methods. A novel model-based Texture Appearance Model (TAM) is proposed for precise and effective segmentation of all sorts of nodule regions. We taught the TAM for segmentation of a lung nodule in lung CT images using a combination of extracted texture characteristics from CT scans and Texture Representation of Image (TRI).

Results. The results of applying the described TAM method to normal and noisy CT images are presented and compared to those obtained using the Region Growing and Active Contour algorithms, as well as the combination of Active Contour and Watershed algorithms. The TAM was tested in 85 nodules from a dataset, yielding an average dice similarity coefficient (DSC) of 84.75 percent.

Conclusion. A novel method for segmenting nodules in the lung, which is capable of segmenting all forms of nodules with excellent accuracy, is proposed. This model-based technique, when used with the active loop algorithm, can enhance accuracy and decrease false positives by selecting the initial mask. The precision, dice, accuracy, and specificity of lung nodule segmentation on a normal CT scan are 85.5, 85, 96, and 98, which levels are superior to those produced by the Active Contour, Region Growing and the combination of Active Contour and Watershed algorithms.

About the Authors

F. Shariaty
Peter the Great St. Petersburg Polytechnic University
Russian Federation

Faridoddin Shariati - Master in "Electrical engineering" (2021), Assistant (2021) of the Higher School of Applied Physics and Space Technologies of Peter the Great St. Petersburg Polytechnic University.

29 Politekhnicheskaya St., St Petersburg 195251.



V. A. Pavlov
Peter the Great St. Petersburg Polytechnic University; Almazov National Medical Research Centre
Russian Federation

Vitalii A. Pavlov - Cand. Sci. (Eng.) (2020), Assistant (2021) of the Higher School of Applied Physics and Space Technologies of Peter the Great St. Petersburg Polytechnic University; Researcher of Center for Personalized Medicine of Almazov National Medical Research Centre.

29 Politekhnicheskaya St., St Petersburg 195251.



S. V. Zavjalov
Peter the Great St. Petersburg Polytechnic University
Russian Federation

Sergey V. Zavyalov - Cand. Sci. (Eng.) (2015), Associate Professor (2020) of the Higher School of Applied Physics and Space Technologies of Peter the Great St. Petersburg Polytechnic University.

29 Politekhnicheskaya St., St Petersburg 195251.



M. Orooji
University of California
United States

Mahdi Orooji - Ph.D. (2012) in electrical engineering with a degree in communications systems from Louisiana State University; Visiting Professor at the University of California.

1 Shields Ave, Davis, CA 95616.



T. M. Pervunina
Almazov National Medical Research Centre
Russian Federation

Tatyana M. Pervunina - Dr Sci. (Medicine) (2019), Associate Professor (2015) of Almazov National Medical Research Centre.

2 Akkuratova St., St Petersburg 197341.



References

1. Shariaty F., Orooji M., Velichko E. N., Zavjalov S. V. Texture Appearance Model, a New Model-Based Segmentation Paradigm, Application on the Segmentation of Lung Nodule in the CT Scan of the Chest. Computers in Biology and Medicine. 2021, vol. 140, p. 105086. doi: 10.1016/j.compbiomed.2021.105086

2. Shariaty F., Mousavi M. Application of CAD Systems for the Automatic Detection of Lung Nodules. Informatics in Medicine Unlocked. 2019, vol. 15, p. 100173. doi: 10.1016/j.imu.2019.100173

3. Zhang Y., Oikonomou A., Wong A., Haider M. A., Khalvati F. Radiomics-Based Prognosis Analysis for NonSmall Cell Lung Cancer. Scientific Reports. 2017, vol. 7, no. 1, pp. 1-8. doi: 10.1038/srep46349

4. Wang Q., Kang W., Hu H., Wang B. HOSVD-Based 3D Active Appearance Model: Segmentation of Lung Fields in CT Images. J. of Medical Systems. 2016, vol. 40, no. 7, pp. 1-11. doi: 10.1007/s10916-016-0535-0

5. Cetin M., Iskurt A. An Automatic 3-d Reconstruction of Coronary Arteries by Stereopsis. J. of Medical Systems. 2016, vol. 40, no. 4, pp. 1-11. doi: 10.1007/s10916-016-0455-z

6. Shariaty F., Orooji M., Mousavi M., Baranov M., Velichko E. Automatic Lung Segmentation in Computed Tomography Images Using Active Shape Model. 2020 IEEE Intern. Conf. on Electrical Engineering and Photonics (EExPolytech), St Petersburg, Russia, 15-16 Oct. 2020. Piscataway, IEEE, 2020, pp. 156-159. doi: 10.1109/EExPolytech50912.2020.9243982

7. Chen X., Udupa J. K., Bagci U., Zhuge Y., Yao J. Medical Image Segmentation by Combining Graph Cuts and Oriented Active Appearance Models. IEEE transactions on image processing. 2012, vol. 21, no. 4, pp. 2035-2046. doi: 10.1109/TIP.2012.2186306

8. Mousavi M., Shariaty F., Orooji M., Velichko E. The Performance of Active-Contour and Region Growing Methods Against Noises in the Segmentation of Computed-Tomography Scans. Book Chapter in Intern. Youth Conf. on Electronics, Telecommunications and Information Technologies. Springer, 2021, pp. 573-582. doi: 10.1007/978-3-030-58868-7_63

9. Shariaty F., Davydov V., Yushkova V., Glinushkin A., Rud V. Y. Automated Pulmonary Nodule Detection System in Computed Tomography Images Based on Active-Contour and SVM Classification Algorithm. J. of Physics: Conf. Series. 2019, vol. 1410, no. 1, p. 012075. doi: 10.1088/1742-6596/1410/1/012075

10. Shariaty F., Hosseinlou S., Rud V. Y. Automatic Lung Segmentation Method in Computed Tomography Scans. J. of Physics: Conf. Series, 2019, vol. 1236, no. 1, p. 012028. doi: 10.1088/1742-6596/1236/1/012028

11. Abdulameer M. H., Sheikh Abdullah S. N. H., Othman Z. A. A Modified Active Appearance Model Based on an Adaptive Artificial Bee Colony. The Scientific World J. 2014, vol. 2014. doi: 10.1155/2014/879031

12. Haas B., Coradi T., Scholz M., Kunz P., Huber M., Oppitz U., Andre L., Lengkeek V, Huyskens D., van Esch A., Reddick R. Automatic Segmentation of Thoracic and Pelvic CT Images for Radiotherapy Planning Using Implicit Anatomic Knowledge and OrganSpecific Segmentation Strategies. Physics in Medicine & Biology. 2008, vol. 53, no. 6, pp. 1751-1771. doi: 10.1088/0031-9155/53/6/017

13. Sahu S. P., Agrawal P., Londhe N. D., Verma S. A New Hybrid Approach Using Fuzzy Clustering and Morphological Operations for Lung Segmentation in Thoracic CT Images. Biomedical and Pharmacology J. 2017, vol. 10, no. 4, pp. 1949-1961. doi: 10.13005/bpj/1315

14. Baazaoui A., Barhoumi W., Ahmed A., Zagrouba E. Semi-Automated Segmentation of Single and Multiple Tumors in Liver CT Images Using EntropyBased Fuzzy Region Growing. IRBM. 2017, vol. 38, no. 2, pp. 98-108. doi: 10.1016/j.irbm.2017.02.003

15. Kashyap R., Tiwari V. Active Contours Using Global Models for Medical Image Segmentation. Intern. J. of Computational Systems Engineering. 2018, vol. 4, no. 2-3, pp. 195-201. doi: 10.1504/IJCSYSE.2018.091404

16. Tabb A., Duncan K. E., Topp C. N. Segmenting Root Systems in X-ray Computed Tomography Images Using Level Sets. 2018 IEEE Winter Conf. on Applications of Computer Vision (WACV), Lake Tahoe, USA, 12-15 March 2018. IEEE, 2018, pp. 586-595: doi: 10.1109/WACV.2018.00070

17. Fan Y., Beare R., Matthews H., Schneider P., Kilpatrick N., Clement J., Claes P., Penington A., Adamson C. Marker-Based Watershed Transform Method for Fully Automatic Mandibular Segmentation from CBCT Images. Dentomaxillofacial Radiology. 2019. vol. 48, no. 2, p. 20180261. doi: 10.1259/dmfr.20180261

18. Anter A. M., Hassenian A. E. CT Liver Tumor Segmentation Hybrid Approach Using Neutrosophic Sets, Fast Fuzzy C-Means and Adaptive Watershed Algorithm. Artificial Intelligence in Medicine. 2019, vol. 97, pp. 105-117. doi: 10.1016/j.artmed.2018.11.007

19. Pankaj A., Ayyappan S. Theoretical Concepts and Technical Aspects on Image Segmentation. Computer Vision: Concepts, Methodologies, Tools and Applications: IGI Global. 2018, pp. 2333-2348.

20. Wang S., Zhou M., Gevaert O., Tang Z., Dong D., Liu Z., Jie T. A Multi-View Deep Convolutional Neural Networks for Lung Nodule Segmentation. 2017 39th Annual Intern. Conf. of the IEEE Engineering in Medicine and Biology Society (EMBC), Jeju, Korea, 11-15 July 2017. IEEE, 2017, pp. 1752-1755. doi: 10.1109/EMBC.2017.8037182

21. Roy R., Chakraborti T., Chowdhury A. S. A Deep Learning-Shape Driven Level Set Synergism for Pulmonary Nodule Segmentation. Pattern Recognition Letters. 2019, vol. 123, pp. 31-38. doi: 10.1016/j.patrec.2019.03.004

22. Huang X., Sun W., Tseng T.-L. B., Li C., Qian W. Fast and Fully-Automated Detection and Segmentation of Pulmonary Nodules in Thoracic CT Scans Using Deep Convolutional Neural Networks. Computerized Medical Imaging and Graphics. 2019, vol. 74, pp. 25-36. doi: 10.1016/j.compmedimag.2019.02.003

23. Mukherjee S., Huang X., Bhagalia R. R. Lung Nodule Segmentation Using Deep Learned Prior Based Graph Cut. 2017 IEEE 14th Intern. Symp. on Biomedical Imaging (ISBI 2017), Melbourne, Australia, 18-21 April 2017. IEEE, 2017, pp. 1205-1208. doi: 10.1109/ISBI.2017.7950733

24. Seifert S., Barbu A., Zhou S. K., Liu D., Feulner J., Huber M., Suehling M., Cavallaro A., Comaniciu D. Hierarchical Parsing And Semantic Navigation of Full Body CT Data. Proc. of SPIE. Medical Imaging 2009: Image Processing. 2009, vol. 7259, pp. 29-36. doi: 10.1117/12.812214

25. Stegmann M. B., Ersboll B. K., Larsen R. FAME-a Flexible Appearance Modeling Environment. IEEE Transactions on Medical Imaging. 2003, vol. 22, no. 10, pp. 1319-1331. doi: 10.1109/TMI.2003.817780

26. Christensen G. E., Rabbitt R. D., Miller M. I. 3D Brain Mapping Using a Deformable Neuroanatomy. Physics in Medicine & Biology. 1994, vol. 39, no. 3, pp. 609-618. doi: 10.1088/0031-9155/39/3/022

27. Gordon G. G. Face Recognition Based on Depth and Curvature Features. Proc. 1992 IEEE Computer Society Conf. on Computer Vision and Pattern Recognition. Champaign, USA, 15-18 June 1992. IEEE, 1992, pp. 808-810. doi: 10.1109/CVPR.1992.223253

28. Sethuram A., Ricanek K., Patterson E. A Comparative Study of Active Appearance Model Annotation Schemes for the Face. Proc. of the Seventh Indian Conf. on Computer Vision, Graphics and Image Processing. 2010, pp. 367-374. doi: 10.1145/1924559.1924608

29. Cootes T. F., Edwards G. J., Taylor C. J. Active Appearance Models. Proc. of European Conf. on Computer Vision. 1998, vol. 2, pp. 484-498.

30. Kamdi S., Krishna R. Image Segmentation and Region Growing Algorithm. Intern. J of Computer Technology and Electronics Engineering (IJCTEE). 2012, vol. 2, no. 1, pp. 103-107.

31. Kass M., Witkin A., Terzopoulos D. Snakes: Active Contour Models. Intern. J. of Computer Vision. 1988, vol. 1, no. 4, pp. 321-331.

32. Shariaty F., Baranov M., Velichko E., Galeeva M., Pavlov V. Radiomics: Extracting More Features Using Endoscopic Imaging. 2019 IEEE Intern. Conf. on Electrical Engineering and Photonics (EExPolytech). St. Petersburg, Russia, 17-18 Oct. 2019. IEEE, 2019, pp. 181-194. doi: 10.1109/EExPolytech.2019.8906843

33. Haralick R. M., Shanmugam K., Dinstein I. H. Textural Features for Image Classification. IEEE Transactions on Systems, Man, and Cybernetics. 1973, no. 6, pp. 610-621. doi: 10.1109/TSMC.1973.4309314

34. Punithavathy K., Ramya M., Poobal S. Analysis of Statistical Texture Features for Automatic Lung Cancer Detection in PET/CT Images. 2015 Intern. Conf. on Robotics, Automation, Control and Embedded Systems (RACE). Chennai, India, 18-20 Feb. 2015. IEEE, 2015, pp. 1-5. doi: 10.1109/RACE.2015.7097244

35. Mayerhoefer M. E., Schima W., Trattnig S., Pinker K., Berger-Kulemann V., Ba-Ssalamah A. TextureBased Classification of Focal Liver Lesions on MRI at 3.0 Tesla: A Feasibility Study in Cysts and Hemangiomas. J. of Magnetic Resonance Imaging. 2010, vol. 32, no. 2, pp. 352-359. doi: 10.1002/jmri.22268

36. Li H., Giger M. L., Lan L., Brown J. B., MacMa-hon A., Mussman M., Olopade O. I., Sennett C. Computerized Analysis of Mammographic Parenchymal Patterns on a Large Clinical Dataset of Full-Field Digital Mammograms: Robustness Study With Two High-Risk Datasets. J. of Digital Imaging. 2012, vol. 25, no. 5, pp. 591-598. doi: 10.1007/s10278-012-9452-z

37. Nie K, Chen J.-H., Hon J. Y., Chu Y., Nalcioglu O., Su M.-Y. Quantitative Analysis of Lesion Morphology and Texture Features for Diagnostic Prediction in Breast MRI. Academic Radiology. 2008, vol. 15, no. 12, pp. 15131525. doi: 10.1016/j.acra.2008.06.005

38. Fjeldbo C. S., Julin C. H., Lando M., Forsberg M. F., Aarne E.-K., Alsner J., Kristensen G. B., Malinen E., Lyng H. Integrative Analysis of DCE-MRI and Gene Expression Profiles in Construction of a Gene Classifier for Assessment of Hypoxia-Related Risk of Chemoradiotherapy Failure in Cervical Cancer. Clinical Cancer Research. 2016, vol. 22, no. 16, pp. 4067-4076. doi: 10.1158/1078-0432.CCR-15-2322

39. Brynolfsson P., Nilsson D., Henriksson R., Hauksson J., Karlsson M., Garpebring A., Birgander R., Trygg J., Nyholm T., Asklund T. ADC Texture - an Imaging Biomarker for High-Grade Glioma? Medical Physics. 2014, vol. 41, no. 10, p. 101903. doi: 10.1118/1.4894812

40. Lambin P., Rios-Velazquez E., Leijenaar R., Carvalho S., van Stiphout R. G. P. M., Granton P., Ze-gers C. M. L., Gillies R., Boellard R., Dekker A., Aerts H. J. W. L. Radiomics: Extracting More Information from Medical Images Using Advanced Feature Analysis. European J. of Cancer. 2012, vol. 48, no. 4, pp. 441-446. doi: 10.1016/j.ejca.2011.11.036

41. Aerts H. J. W. L., Velazquez E. R., Leije-naar R. T. H., Parmar C., Grossmann P., Carvalho S., Bussink J., Monshouwer R., Haibe-Kains B., Rietveld D., Hoebers F., Rietbergen M. M., Leemans C. R., Dekker A., Quackenbush J., Gillies R. J., Lambin P. Decoding Tumour Phenotype by Noninvasive Imaging Using a Quantitative Radiomics Approach. Nature Communications. 2014, vol. 5, no. 1, pp. 1-9. doi: 10.1038/ncomms5006

42. Lovinfosse P., Polus M., Daele D. V., Martinive P., Daenen F., Hatt M., Visvikis D., Koopmansch B., Lambert F., Coimbra C., Seidel L., Albert A., Delvenne P., Hus-tinx R. FDG PET/CT Radiomics for Predicting the Outcome of Locally Advanced Rectal Cancer. European J. of Nuclear Medicine and Molecular Imaging. 2018, vol. 45, no. 3, pp. 365-375. doi: 10.1007/s00259-017-3855-5

43. Cho H.-h., Park H. Classification of Low-Grade and High-Grade Glioma Using Multi-Modal Image Ra-diomics Features. 2017 39th Annual Intern. Conf. of the IEEE Engineering in Medicine and Biology Society (EMBC). Jeju, Korea, 11-15 July 2017. IEEE, 2017, pp. 3081-3084. doi: 10.1109/EMBC.2017.8037508

44. Al-Kilidar S. H., George L. E. Texture Classification Using Gradient Features with Artificial Neural Network. J. of Southwest Jiaotong University. 2022, vol. 55, no. 1. doi: 10.35741/issn.0258-2724.55.1.13

45. Smith J. R. Integrated Spatial And Feature Image Systems: Retrieval, Analysis and Compression. Columbia University, 1997, 178 p.

46. Ojala T., Pietikainen M., Maenpaa T. Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2002, vol. 24, no. 7, pp. 971-987. doi: 10.1109/TPAMI.2002.1017623

47. Su K.-Y., Lee C.-H. Speech Recognition Using Weighted HMM and Subspace Projection Approaches. IEEE Transactions on Speech and Audio Processing. 1994, vol. 2, no. 1, pp. 69-79. doi: 10.1109/89.260336


Review

For citations:


Shariaty F., Pavlov V.A., Zavjalov S.V., Orooji M., Pervunina T.M. Application of a Texture Appearance Model for Segmentation of Lung Nodules on Computed Tomography of the Chest. Journal of the Russian Universities. Radioelectronics. 2022;25(3):96-117. (In Russ.) https://doi.org/10.32603/1993-8985-2022-25-3-96-117

Views: 458


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1993-8985 (Print)
ISSN 2658-4794 (Online)