Features of Unmanned Aircraft Detection Using Precision Approach Radar
https://doi.org/10.32603/1993-8985-2022-25-3-51-61
Abstract
Introduction. The increasing number of incidents involving unmanned aerial vehicles (UAVs) makes their detection in the aerodrome area an important task, which can be solved by specialized surveillance means. However, the application of such means requires certification procedures confirming the effectiveness and safety of their use. Therefore, in the short term, it seems reasonable to use standard technologies. In the approach sector, this task can be solved by precision approach radar systems. The small radar cross-section (RCS) of UAVs leads to a decrease in the maximum range and the appearance of blind spots, within which the vehicle cannot be detected.
Aim. Analysis of the possibility of detecting UAVs using a precision approach radar, assessing the maximum detection range, blind spots and developing recommendations for their reduction.
Materials and methods. An analytical method was used for determining the maximum detection range for a precision approach radar, taking into account UAV characteristics. A method for estimating the detection range of a low-flying target, taking into account the influence of the underlying surface, was also used.
Results. Using the example of the precision approach radar RP-5G, the maximum detection ranges were determined, which amounted to 380, 2730, 4480 and 14350 m for UAVs with an RCS of 0.01, 0.05, 0.1 and 0.5 m2, respectively. The length of the blind spots of the RP-5G was 4620, 2270, 1019 m for UAVs with an RCS of 0.01, 0.05, 0.1 m2, respectively. Under the vehicle RCS of 0.5 m2 and greater, no blind spots are observed.
Conclusion. Analytical expressions for calculating the maximum detection range and blind spots were obtained. The results can be used when assessing specific features of UAV observation in the aerodrome area (landing sector). Standard precision approach radar systems can be used when surveying UAVs with an RCS greater than 0.5 m2. For UAVs with an RCS of 0.1...0.5 m2, modernized precision approach radar systems with an increased probing pulse energy should be implemented.
About the Authors
E. A. RubtsovRussian Federation
Evgeny A. Rubtsov - Cand. Sci. (Eng.) (2015), Associate Professor of the Department "Radio-Electronic systems" of Saint Petersburg State University of Civil Aviation.
38, Pilotov St., St Petersburg 196210.
A. V. Fedorov
Russian Federation
Andrey V. Fedorov - Cand. Sci. (Ped.) (2004), Associate Professor (2012), Serving Chief of Department "Radio-Electronic systems" of Saint Petersburg State University of Civil Aviation.
38, Pilotov St., St Petersburg 196210.
N. V. Povarenkin
Russian Federation
Nikolay V. Povarenkin - Cand. Sci. (Eng.) (2000), Associate Professor (2007), Chief of Department "Radio-Electronic equipment" of Saint Petersburg State University of Aerospace Instrumentation.
67a, Bolshaja Morskaja St., St Petersburg 190000.
M. Al-Rubaye
Iraq
Al-Rubaye Mudher - Cand. Sci. (Eng.) (2016), Supervisor in Control Training of Iraqi Ministry of Defense Air control section.
Green Zone, Baghdad 10069.
References
1. Drone Disruption at Airports. Available at: https://www.wtwco.com/en-US/News/2019/08/willis-towers-watson-launches-drone-disruption-action-plan (accessed 20.03.2022)
2. Fernsby C. Drone Sighting Temporarily Halts Air Traffic in Frankfurt. Post Online Media. Available at: https://www.poandpo.com/news/drone-sighting-temporarily-halts-air-traffic-in-frankfurt-1052019529 (accessed 20.03.2022)
3. GEO ZONE MAP. Available at: https://www.dji.com/ru/flysafe/geo-map (accessed 20.03.2022)
4. Kudryakov S. A., Knizhnichenko N. V., Rubtsov E. A. Issues of Ensuring the Safe Use of Unmanned Aircraft Systems. Bulletin of the Saint Petersburg State University of Civil Aviation. 2019, no. 1 (22), pp. 72-84. (In Russ.)
5. Robin Radar Systems IRIS. Available at: https://www.robinradar.com/iris-counter-drone-radar?hsLang=en (accessed 20.03.2022)
6. Semi-Active Radar. Passive Coherent Location Complex. Available at: https://etu.ru/ru/nii-prognoz/napravleniya-issledovanij/poluaktivnaya-radiolokaciya (accessed 20.03.2022) (In Russ.)
7. Rubtsov E. A., Tunikov P. G. Determination of the Effective Scattering Area of Unmanned Aircraft Using a Precision Approach Radar. Actual problems and prospects of civil aviation development: Proc. of the IX Intern. Scientific and Practical Conf., Irkutsk, 15-22 Okt. 2020, pp. 271-277. (In Russ.)
8. Belous A. Handbook of Microwave and Radar Engineering. Springer, 2021, 973 p. doi: 10.1007/9783-030-58699-7
9. Gribkov A. S., Gribkov V. S., Gromov A. N Radiolokatsionnye kharakteristiki ob"ektov. Metody issledovani-yC [Radar Characteristics of Objects. Research Methods]. Ed. by S. M. Nesterov. Moscow, RCdiotekhnikC, 2015, 312 p. (In Russ.)
10. Khuong N. V. Justification of the Possibility of Using a Landing Radar to Detect Meteorological Formations. Proc. of MIPT. 2021, vol. 13, no. 1 (49), pp. 71-82. doi: 10.53815/20726759_2021_13_1_71
11. Akinshin N. S., Bystrov R. P., Rumyantsev V. L., Sokolov A. V. Millimetrovaya radiolokatsiya: metody obnaruzheniya negaussovskikh signalov [Millimeter Radar: Techniques for Detecting Non-Gaussian Signals]. Moscow, RCdiotekhnikC, 2010, 528 p. (In Russ.)
12. Radar PAR RP-5NG. Available at: https://www.nrtscz.cz/radar-par-rp-5ng/ (accessed 20.03.2022)
13. Precision approach radar RP-5GI. Available at: https://www.tcz.cz/radar-systems/precision-approach-radar-rp-5gi/?lang=en (accessed 20.03.2022)
14. GCA-22ML. Available at: https://www.litaktak.com/product/atc-systems/GCA-22ML/ (accessed 20.03.2022)
15. PAR 2090C Precision Approach Radar. Available at: https://electronics.leonardo.com/en/products/par2090c (accessed 20.03.2022)
16. PAR-E Precision Approach Radar. Available at: https://www.eldis.cz/en/par-e-fixed (accessed 20.03.2022)
17. Precision approach radar module PRL-27SM. Available at: https://aviationunion.ru/konkurs/docs/ 2017/7/Nom_7_LEMZ.pdf (accessed 20.03.2022) (In Russ.)
18. Precision Approach Radar (PAR-2020). Available at: https://www.l3harris.com/sites/default/files/2020-11/l3harris-precision-approach-radar-2020-sell-sheet-sas.pdf (accessed 20.03.2022)
19. Clemente C., Fioranelli F., Colone F., Li G. Radar Countermeasures for Unmanned Aerial Vehicles. London, The Institution of Engineering and Technology, 2021, 432 p.
20. Makarenko S. I. Protivodeistvie bespilotnym letatel'nym apparatam [Countering Unmanned Aerial Vehicles]. Saint Petersburg, High-tech technologies, 2020, 204 p. (In Russ.)
21. Sukharevsky O. I., Vasylets V. A. Ryapolov I. E. Evaluation of the Parameters of the Detection Zones of the Orlan-10 Unmanned Aerial Vehicle by Radar Means of the 9K33M3 OSA-AKM Self-Propelled Anti-Aircraft Missile System. Science and Technology of the Air Forces of Ukraine. 2016, no. 4 (25), pp. 33-38. (In Russ.)
22. Sukharevsky O., Vasylets V., Orlenko V., Ryapolov I. Radar Scattering Characteristics of a UAV Model in X-band. IET Radar, Sonar and Navigation. 2020, vol. 14, no. 4, pp. 532-537. doi: 10.1049/iet-rsn.2019.0243
23. Semkin V., Haarla J., Pairon T., Slezak C., Rangan S., Viikari V., Oestges C. Analyzing Radar Cross Section Signatures of Diverse Drone Models at mmWave Frequencies. IEEE Access. 2020, vol. 8, pp. 48958-48969. doi: 10.1109/ACCESS.2020.2979339
24. Ezuma M., Erden F., Anjinappa C. K., Ozdemir O., Guvenc I. Micro-UAV Detection and Classification from RF Fingerprints Using Machine Learning Techniques. IEEE Aerospace Conf. Big Sky, MT, USA, 2-9 March 2019, pp. 1-13. doi: 10.1109/AERO.2019.8741970
25. Guvenc I., Koohifar F., Singh S., Sichitiu M. L., Matolak D. Detection, Tracking, and Interdiction for Amateur Drones. IEEE Communications Magazine. 2018, vol. 56, no. 4, pp. 75-81. doi: 10.1109/MCOM.2018.1700455
26. Ezuma M., Erden F., Anjinappa C. K., Gulzar W. A., Guvenc I. Micro-UAV Detection with a Low-Grazing Angle Millimeter Wave Radar. IEEE Radio and Wireless Symposium (RWS). Orlando, FL, USA, 20-23 Jan. 2019, pp. 1-4. doi: 10.1109/RWS.2019.8714203
27. Rahman S., Robertson D. A. Inflight RCS Measurements of Drones and Birds at k-band and W-Band. IET Radar, Sonar and Navigation. 2018, vol. 13, no. 2, pp. 300-309.
28. Gong J., Yan J., Li D., Kong D. Interference of Radar Detection of Drones by Birds. Progress in Electromagnetics Research. 2019, vol. 81, pp. 1-11.
29. Ezuma M., Funderburk M., Guvenc I. CompactRange RCS Measurements and Modeling of Small Drones at 15 GHz and 25 GHz. Proc. IEEE Radio Wireless Symp. (RWS). San Antonio, TX, USA, 26-29 Jan. 2020, pp. 1-4. doi: 10.1109/RWS45077.2020.9050049
Review
For citations:
Rubtsov E.A., Fedorov A.V., Povarenkin N.V., Al-Rubaye M. Features of Unmanned Aircraft Detection Using Precision Approach Radar. Journal of the Russian Universities. Radioelectronics. 2022;25(3):51-61. (In Russ.) https://doi.org/10.32603/1993-8985-2022-25-3-51-61