Preview

Journal of the Russian Universities. Radioelectronics

Advanced search

An Algorithm for Estimating the Velocity of a Moving Target Based on Mellin Matched Filter

https://doi.org/10.32603/1993-8985-2022-25-3-22-38

Abstract

Introduction. Construction of the radar image of a moving target and estimation of its velocity in synthetic aperture radars (SAR) presents a relevant research problem. The low quality of radar imaging is frequently related to the phenomenon of range cell migration (RCM). Conventional methods for RCM compensation, which are successfully used to obtain radar images of stationary targets, fail to provide the required quality when applied to moving targets. At present, a number of algorithms are used to solve this problem. However, the majority of them employ optimization procedures when searching for estimates of unknown parameters, which fact greatly complicates their implementation. An exception is the LvD algorithm, which implements double keystone transform to construct a radar image without using complex estimate search procedures. Radar images are constructed in the coordinates "longitudinal velocity - lateral velocity", which facilitates estimation of the target velocity components.

Aim. Development of an alternative algorithm based on the Mellin matched filter (MMF) for estimating the velocity and constructing the radar image of a moving target in a side-looking SAR.

Materials and methods. The derived algorithm is based on the invariance of the integral Mellin transform to the signal scale and uses the MMF to estimate the target velocity components.

Results. An algorithm for constructing the radar image of a moving target based on the MMF was synthesized. An analysis of the LvD algorithm showed its capacity for selecting the optimum scale factor when implementing a second KT. The conducted computer simulation of the MMF and LvD algorithms showed their equal accuracy. Under the same simulation scenarios, both algorithms yield effective estimates of the velocity components of a moving target when the signal-to-noise ratio is greater than -10 dB.

Conclusion. The proposed algorithm for constructing a radar image can be used in SAR systems designed for detection and velocity estimation of a moving target.

About the Author

A. A. Monakov
Institute of Radio Technique, Electronics and Communication Saint Petersburg State University of Aerospace Instrumentation
Russian Federation

Andrey A. Monakov - Dr Sci. (Eng.) (2000), Professor (2005) of the Department of Radio Engineering Systems of Saint Petersburg State University of Aerospace Instrumentation.

67 A, Bolshaya Morskaya St., St Petersburg 190000.



References

1. Cumming I., Bennett J. Digital processing of Seasat SAR data. Proc. IEEE Intern. Conf. on Acoustics, Speech and Signal Proc. 1979, vol. 4, pp. 710-718. doi: 10.1109/icassp.1979.1170630

2. Jin M. Y., Wu Ch. A SAR Correlation Algorithm Which Accommodates Large Range Migration. IEEE Transactions on Geoscience and Remote Sensing. 1984, no. 6, pp. 592-597. doi: 10.1109/tgrs.1984.6499176

3. Chang C. Y., Jin M., Curlander J. C. Squint Mode SAR Processing Algorithms. 12th Canadian Symp. on Remote Sensing Geoscience and Remote Sensing Symp. 1989, vol. 3, pp. 1702-1706. doi: 10.1109/igarss.1989.576456

4. Smith A. M. A New Approach to Range-Doppler SAR Processing. Int. J. of Remote Sensing. 1991, vol. 12, no. 2, pp. 235-251. doi: 10.1080/01431169108929650

5. Franceschetti G., Schirinzi G. A SAR Processor Based on Two-Dimensional FFT code. IEEE Transactions on Aerospace Electronic Systems. 1990, vol. 26, no. 2, pp. 356-366. doi: 10.1109/7.53462

6. Cafforio C., Prati C., Rocca F. SAR Data Focusing Using Seismic Migration Techniques. IEEE Transactions on Aerospace and Electronic Systems. 1991, vol. 27, no. 2, pp. 194-207. doi: 10.1109/7.78293

7. Franceschetti G., Lanari R., Marzouk E. S. Aberration Free SAR Raw Data Processing Via Transformed Grid Predeformation. Proc. of IGARSS '93 - IEEE Intern. Geoscience and Remote Sensing Symp. 1993, vol. 4, pp. 15931595. doi: 10.1109/igarss.1993.322306

8. Stolt R. H. Migration by Fourier Transform. Geophysics. 1978, vol. 43, no. 1, pp. 23-48. doi: 10.1190/1.1440826

9. Runge H., Bamler R. A Novel High Precision SAR Focussing Algorithm Based on Chirp Scaling. Proc. Article IGARSS '92 Intern. Geoscience and Remote Sensing Symp. 1992, vol. 1, pp. 372-375. doi: 10.1109/igarss.1992.576715

10. Cumming I., Wong F., Raney K. A SAR Processing Algorithm with no Interpolation. Proc. IGARSS '92 Intern. Geoscience and Remote Sensing Symp. 1992, vol. 1, pp. 376-379. doi: 10.1109/igarss.1992.576716

11. Wong F., Cumming I., Raney R. K. Processing Simulated RADARSAT SAR Data with Squint by a High Precision Algorithm. Proc. of IGARSS '93. IEEE Intern. Geoscience and Remote Sensing Symp. 1993, vol. 3, pp. 1176-1178. doi: 10.1109/igarss.1993.322127

12. Raney R. K., Runge H., Bamler R., Cumming I. G., Wong F. H. Precision SAR Processing Using Chirp Scaling. IEEE Transactions on Geoscience and Remote Sensing. 1994, vol. 32, no. 4, pp. 786-799. doi: 10.1109/36.298008

13. Moreira A., Huang Y. Airbome SAR Processing of Highly Squinted Data Using a Chirp Scaling Approach with Integrated Motion Compensation. IEEE Trans. Geoscience and Remote Sensing. 1994, vol. 32, no. 5, pp. 1029-1040. doi: 10.1109/36.312891

14. Moreira A., Mittermayer J., Scheiber R. Extended Chirp Scaling Algorithm for Air- and Spaceborne SAR Data Processing in Stripmap and ScanSAR Imaging Modes. IEEE Transactions on Geoscience and Remote Sensing. 1996, vol. 34, no. 5, pp. 1123-1136. doi: 10.1109/36.536528

15. Mittermayer J., Moreira A., Loffeld O. Spotlight SAR Data Processing Using the Frequency Scaling Algorithm. IEEE Transactions on Geoscience and Remote Sensing. 1999, vol. 37, no. 5, pp. 2198-2214. doi: 10.1109/36.789617

16. Zhu D., Shen M., Zhu Z. Some Aspects of Improving the Frequency Scaling Algorithm for Dechirped SAR Data Processing. IEEE Transactions on Geoscience and Remote Sensing. 2008, vol. 46, no. 6, pp. 1579-1588. doi: 10.1109/tgrs.2008.916468

17. Perry R. P., DiPietro R. C., Fante R. L. SAR imaging of moving targets. IEEE Transactions on Aerospace Electronic Systems. 1999, vol. 35, no. 1, pp. 188-200. doi: 10.1109/7.745691

18. Perry R. P., DiPietro R. C., Fante R. L. Coherent Integration with Range Migration Using Keystone Formatting. IEEE Radar Conf. Waltham, USA, 17-20 April 2007. IEEE, 2007, pp. 863-868. doi: 10.1109/radar.2007.374333

19. Zhu D., Li Y., Zhu Z. A Keystone Transform without Interpolation for SAR Ground Moving Target Imaging. IEEE Geoscience and Remote Sensing Lett. 2007, vol. 4, no. 1, pp. 18-22. doi: 10.1109/lgrs.2006.882147

20. Monakov A. A. A Simple Algorithm for Compensation of the Range Cell Migration in a Stripmap SAR. J. of the Russian Universities. Radioelectronics. 2021, vol. 24, no. 2, pp. 27-37. doi: 10.32603/19938985-2021-24-2-27-37

21. Zhou F., Wu R., Xing M., Bao Z. Approach for Single Channel SAR Ground Moving Target Imaging and Motion Parameter Estimation. IET Radar, Sonar & Navigation. 2007, vol. 1, no. 1, pp. 59-66. doi: 10.1049/iet-rsn:20060040

22. Kirkland D. Imaging Moving Targets Using the Second-Order Keystone Transform. IET Radar, Sonar & Navigation. 2011, vol. 5, no. 8, pp. 902-910. doi: 10.1049/iet-rsn.2010.0304

23. Kirkland D. An Alternative Range Migration Correction Algorithm for Focusing Moving Targets. Progress in Electromagnetics Research. 2012, vol. 131, pp. 227-241. doi: 10.2528/PIER12060711

24. Djurovi'c I., Thayaparan T., Stankovi'c L. SAR Imaging of Moving Targets using Polynomial FT. IET Signal Processing. 2008, vol. 2, no. 3, pp. 1436-1447. doi: 10.1049/iet-spr:20070114

25. Monakov A. A. Parameter Estimation of Polynomial-Phase Signals. J. of the Russian Universities. Radioelectronics. 2020, vol. 23, no. 5, pp. 24-36. doi: 10.32603/1993-8985-2020-23-5-24-36 (In Russ.)

26. Li G., Xia X.-G., Peng Y.-N. Doppler Keystone Transform for SAR Imaging of Moving Targets. Proc. of the 2008 Congress on Image and Signal Processing. 2008, vol. 4, pp. 716-719. doi: 10.1109/CISP.2008.600

27. Cohen L. Time-Frequency Distributions - a Review. Proc. of the IEEE. 1989, vol. 77, no. 7, pp. 941-981. doi: 10.1109/5.30749

28. Hlawatsch F., Boudreaux-Bartels G. F. Linear and Quadratic Time-Frequency Signal Representations. IEEE Signal Processing Magazine. 1992, vol. 9, no. 2, pp. 21-67. doi: 10.1109/79.127284

29. Claasen T. A. C. M., Mecklenbrauker W. F G. The Wigner Distribution - a Tool For Time-Frequency Signal Analysis. Part I: Continuous-Time Signals. Philips J. Res. 1980, vol. 35, no. 3, pp. 217-250.

30. Boashash B. Note on the Use of the Wigner Distribution for Time-Frequency Signal Analysis. IEEE Transactions on Acoustics, Speech, and Signal Processing. 1988, vol. 36, no. 9, pp. 1518-1521. doi: 10.1109/29.90380

31. Barbarossa S., Farina A. Detection and Imaging of Moving Objects with Synthetic Aperture Radar. Part 2: Joint Time-Frequency Analysis by Wigner-Ville distribution. IEE Proc. F Radar Signal Process. 1992, vol. 139, no. 1, pp. 89-97. doi: 10.1049/ip-f-2.1992.0011

32. Wood J. C., Barry D. T. Radon Transformation of Time-Frequency Distributions for Analysis of Multicomponent Signals. IEEE Transactions on Signal Processing. 1994, vol. 42, no. 11, pp. 3166-3177. doi: 10.1109/78.330375

33. Barbarossa S. Analysis of Multicomponent LFM signals by a Combined Wigner-Hough Transform // IEEE Transactions on Signal Processing. 1995, vol. 43, no. 6, pp. 1511-1515. doi: 0.1109/78.388866

34. Sejdic E., Djurovic I., Jiang J. Time-Frequency Feature Representation Using Energy Concentration: An Overview of Recent Advances. Digital Signal Processing. 2009, vol. 19, no. 1, pp. 153-183. doi: 10.1016/j.dsp.2007.12.004

35. Almeida L. B. The Fractional Fourier Transform and Time-Frequency Representations. IEEE Transactions on Signal Processing. 1994, vol. 42, no. 11, pp. 3084-3091. doi: 10.1109/78.330368

36. Sejdic' E., Djurovic' I., Stankovic' L. Fractional Fourier Transform as a Signal Processing Tool: An Overview of Recent Developments. Signal Processing, 2011, vol. 91, no. 6, pp. 1351-1369. doi: 10.1016/j.sigpro.2010.10.008

37. Lv X. L., Xing M. D., Zhang S. H., Bao Z. Keystone Transformation of the Wigner-Ville Distribution for Analysis of Multicomponent LFM signals. Signal Processing. 2009, vol. 59, pp. 791-806. doi: 10.1016/j.sigpro.2008.10.029

38. Lv X. L., Xing M. D., Wan C. R., Zhang S. H. ISAR Imaging of Maneuvering Targets Based on the Range Centroid Doppler Technique. IEEE Trans. on Image Process. 2010, vol. 19, no. 1, pp. 141-153. doi: 10.1109/TIP.2009.2032892

39. Lv X. L., Bi G. A., Wan C. R., Xing M. D. Lv's Distribution: Principle, Implementation, Properties, and Performance. IEEE Trans. on Signal Process. 2011, vol. 59, no. 8, pp. 3576-3591. doi: 10.1109/TSP.2011.2155651

40. Luo S., Lv X., Bi G. Lv's Distribution for Time-Frequency Analysis. Proc. of 2011 Int. Conf. on Circuits, Systems, Control, Signals. 2011, pp. 110-115.

41. Luo Sh., Bi G., Lv X., Hu F. Performance Analysis on Lv Distribution and its Aapplications. Digital Signal Process. 2013, vol. 23, no. 3, pp. 797807. doi: 10.1016/j.dsp.2012.11.011

42. Monakov A. A. Application of Scale Invariant Transforms to Some Problems in Digital Signal Processing. J. Achievements of Modern Radioelectronics, 2011, vol. 65, no. 11, pp. 65-72. (In Russ.)

43. Monakov A. A. The Mellin Matched Filter. J. Achievements of Modern Radioelectronics. 2013, vol. 67, no. 2, pp. 56-62. (In Russ.)

44. Monakov A. The Mellin Matched Filter. IEEE J. of Selected Topics in Signal Processing. 2015, vol. 9, no. 8, pp. 1451-1459. doi: 10.1109/JSTSP.2015.2465309

45. De Sena A., Rocchesso D. A Fast Mellin Transform with Applications in DAF. Proc. of the 7th Int. Conf. on Digital Audio Effects (DAFx '04). 2004, pp. 65-69.

46. De Sena A., Rocchesso D. A fast Mellin and Scale Transform. EURASIP J. on Advances in Signal Processing. 2007, pp. 1-9. doi: 10.1155/2007/89170


Review

For citations:


Monakov A.A. An Algorithm for Estimating the Velocity of a Moving Target Based on Mellin Matched Filter. Journal of the Russian Universities. Radioelectronics. 2022;25(3):22-38. (In Russ.) https://doi.org/10.32603/1993-8985-2022-25-3-22-38

Views: 414


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1993-8985 (Print)
ISSN 2658-4794 (Online)