Microfocus X-ray Tubes
https://doi.org/10.32603/1993-8985-2021-24-5-6-21
Abstract
Introduction. X-ray inspection plays a unique role among all nondestructive testing methods for products and materials due to sufficiently high resolution and high penetrability. The present study is designed to consider the key features of microfocus X-ray sources, their areas of application, and main technical characteristics.
Aim. The paper aims to systematize information and review modern X-ray radiation sources for the implementation of microfocus radiography.
Materials and methods. The main designs of microfocus X-ray tubes (soldered and demountable) were considered relying on the experience of the St Petersburg State Electrotechnical University in developing and operating such equipment, as well as the experience and open-access publications of foreign researchers and developers. Data collected by leading research teams over the last ten years were analyzed.
Results. The paper presents design features for each main type of microfocus X-ray tubes – soldered and demountable. All key structural elements are considered: an anode assembly, a cathode assembly, and a focusing system. The influence of anode target material on the X-ray tube radiation spectrum is shown. An original design of a liquid-anode microfocus X-ray tube is described to demonstrate its key features and advantages. In addition, the paper gives an overview of cathodes used in microfocus X-ray tubes (tungsten cathode and lanthanum hexaboride cathode), as well as providing a detailed description of calculations performed for focusing systems. Finally, the designs of modern X-ray tubes are presented.
Conclusion. Modern X-ray tubes are high-tech products that allow for high-resolution research of various objects. The main advantage of testing performed with the use of X-ray tubes consists in high resolution (micron and submicron). The X-ray images of test objects used to determine their spatial resolution are given, which clearly illustrate the vast possibilities of this technology. In addition, ways to improve microfocus X-ray tubes are briefly discussed. The considered materials can be useful in selecting a nondestructive testing tool, as well as in developing and creating X-ray systems on the basis of microfocus X-ray tubes.
About the Author
V. B. BessonovRussian Federation
Victor B. Bessonov, Cand. Sci. (Eng.) (2014).
5 Professor Popov St., St Petersburg 197376, Russia
References
1. Potrakhov N. N. Diagnostic capabilities of microfocus radiography. Meditsinskaya tekhnika [Medical technology]. 2014, no. 5 (287), pp. 8–12. (In Russ.)
2. Gryaznov A. Yu., Guk K. K., Staroverov N. E., Kholopova E. D. Method for Sharpening and Contrasting Details of X-Ray Images. Physical Bases of Instrumentation. 2019, vol. 8, no. 4 (34), pp. 34–37. doi: 10.25210/jfop-1904-034037 (In Russ.)
3. Staroverov N. E., Gryaznov A. Yu., Potrakhov N. N., Kholopova E. D., Guk K. K. New methods for digital processing of microfocus X-ray images. Biomedical Engineering. 2019, vol. 52, no. 6, pp. 435–438. doi: 10.1007/s10527-019-09864-6
4. Podemskiy A. A., Potrakhov N. N. Microfocus X-ray tubes of new generation. Kontrol'. Diadnostika [Control. Diagnostics]. 2017, no. 4, pp. 4–8. doi: 10.14489/td.2017.04.pp.004-008 (In Russ.)
5. Potrakhov N. N., Bessonov V. B., Obodovskii A. V., Gryaznov A. Yu., Zhamova K. K., Podymskii A. A., Potrakhov E. N. 0.2BPM64-200 microfocus X-ray tube for projection radiography. Russian Journal of Nondestructive Testing. 2017, vol. 53, no. 3, pp. 227–230. doi: 10.1134/S106183091703007X
6. Barysheva M. M., Zuev S. Y., Lopatin A. Y., Luchin V. I., Pestov A. E., Salashchenko N. N., Tsybin N. N., Chkhalo N. I. Prospects for the Use of X-Ray Tubes with a Field-Emission Cathode and a Through-Type Anode in the Range of Soft XRay Radiation. Technical Physics. 2020, vol. 65, iss. 11, pp. 1726–1735. doi: 10.1134/S1063784220110043
7. Burtelov V. A., Kudryashov A. V., Sheshin E. P., Majmaa Huda Khalid Khameed. Compact sources of X-ray radiation. Trudi MFTI. 2019, vol. 11, no. 2 (42), pp. 116–155. (In Russ.)
8. Kandlakunta P., Thomas A., Tan Y., Khan R., Zhang T. Design and numerical simulations of W-diamond transmission target for distributed X-ray sources. Biomedical Physics & Engineering Express. 2018, vol. 5 (2), pp. 1-12. doi: 10.1088/2057-1976/AAE55F
9. Ketelhut S., Büermann L., Hilgers G. Catalog of Xray spectra of Mo-, Rh-, and W-anode-based X-ray tubes from 10 to 50 kV. Physics in Medicine & Biology. 2021, vol. 66, no. 11, pp. 1-13. doi: 10.1088/1361-6560/ABFBB2
10. Hemberg O., Hansson B., Otendal M., Tuohimaa T. High-brightness liquid-metal-jet X-ray tube. Acta Crystallographica Section A Foundations of Crystallography. 2011, vol. 67, 257 p. doi: 10.1107/S0108767311093573
11. Kalha C., Fernando N. K., Bhatt P., Johansson F. O. L., Lindblad A., Rensmo H., Medina L. Z., Lindblad R., Siol S., Jeurgens L. P. H., Cancellieri C., Rossnagel K., Medjanik K., Schönhense G., Simon M., Gray A. X., Nemšák S., Lö- mker P., Schlueter Ch., Regoutz A. Hard X-ray photoelectron spectroscopy: a snapshot of the state-of-the-art in 2020. J. of Physics. Condensed Matter. 2021, vol. 33, no. 23, pp. 1-44. doi: 10.1088/1361-648X/abeacd
12. Brooks F. J., Gunsten S. P., Vasireddi S. K., Brody S. L., Anastasio M. A. Quantification of image texture in X‐ray phase‐contrast‐enhanced projection images of in vivo mouse lungs observed at varied inflation pressures. Physiological Reports. 2019, vol. 7, iss. 16, pp. 1-15. doi: 10.14814/phy2.14208
13. Murrie R. P., Werdiger F., Donnelley M., Lin Yu., Carnibella R. P., Samarage Ch. R., Pinar I., Preissner M., Wang J., Li J., Morgan K. S., Parsons D. W., Dubsky S., Fouras A. Real-time in vivo imaging of regional lung function in a mouse model of cystic fibrosis on a laboratory Xray source. Scientific Reports. 2020, vol. 10, iss. 1, pp. 1-8. doi: 10.1038/s41598-019-57376-w
14. Vågberg W., Larsson D., Li M., Hertz H. X-ray phase-contrast tomography for high-spatial-resolution zebrafish muscle imaging. Scientific Reports. 2015, vol. 5, pp. 1-7. doi: 10.1038/srep16625
15. Obodovskiy A. V., Bessonov V. B., Larionov I. A. Shift focal spot X-ray tube to the imposition anode under long exposure. Journal of Physics: Conference Series. 2018, vol. 967, pp. 1-4. doi: 10.1088/1742-6596/967/1/012010
16. Haga A., Senda S., Sakai Y., Mizuta Y., Kita S., Okuyama F. A miniature X-ray tube. Applied physics letters. 2004, vol. 84, no. 12, pp. 2208–2210. doi: 10.1063/1.1689757
17. Heo S. H., Ihsan A., Cho S. O. Transmission-type microfocus X-ray tube using carbon nanotube field emitters. Applied physics letters. 2007, vol. 90, no. 18, pp. 1-3. doi: 10.1063/1.2735549
18. Gupta A. P., Park S., Yeo S. J., Jung J., Cho Ch., Hyun Paik S., Park H., Chul Cho Yo., Kim S. H., Shin J. H., Ahn Je. S., Ryu Je. Direct synthesis of carbon nanotube field emitters on metal substrate for open-type X-ray source in medical imaging. Materials. 2017, vol. 10, no. 8, pp. 1-10. doi: 10.3390/ma10080878
19. Puett C., Inscoe C., Hartman A., Calliste J., Francesci D. K., Lu J., Zhou O., Lee Y. Z. An update on carbon nanotube‐enabled X‐ray sources for biomedical imaging. Wiley Interdisciplinary Reviews. Nanomedicine and Nanobiotechnology. 2018, vol. 10, no. 1, pp. 1-11. doi: 10.1002/wnan.1475
20. Ryu J. H., Bae N. Y., Oh H. M. Stabilized electron emission from silicon coated carbon nanotubes for a high-performance electron source. J. of Vacuum Science & Technology B. 2011, vol. 29, no. 2, pp. 1-5. doi: 10.1116/1.3565428
21. Eckermann M., Töpperwien M., Robisch A.-L., Meer F., Stadelmann Ch., Salditt T. Phase-contrast X-ray tomography of neuronal tissue at laboratory sources with submicron resolution. J. of Medical Imaging. 2020, vol. 7, iss. 1, pp. 1-15. doi: 10.1117/1.JMI.7.1.013502
22. Regoutz A., Mascheck M., Wiell T., Eriksson S. K., Liljenberg C., Tetzner K., Williamson B. A. D., Scanlon D. O., Palmgren P. A novel laboratory-based hard X-ray photoelectron spectroscopy system. Review of Scientific Instruments. 2018, vol. 89, iss. 7, pp. 1-10. doi: 10.1063/1.5039829
23. Anoshkin A. N., Osokin V. M., Tretyakov A. A., Potrakhov N. N., Bessonov V. B. Application of operational radiographic inspection method for flaw detection of blade straightener from polymeric composite materials. Journal of Physics. Conf. Series. 2017, vol. 808, pp. 1-5. doi: 10.1088/1742-6596/808/1/012003
24. Arkhipov M. V., Priyatkin N. S., Gusakova L. P., Potrakhov N. N., Gryaznov V. B., Obodovskii A. V., Staroverov N.E. X-Ray Computer Methods for Studying the Structural Integrity of Seeds and Their Importance in Modern Seed Science. Technical Physics. 2019, vol. 64, pp. 582–592. doi: 10.1134/S1063784219040030
25. Karamysheva A., Trofimuk L., Priyatkin N., Arkhipov M., Gusakova L., Shchukina P., Staroverov N., Portakhov N. Comparative study of the fullness of dwarf Siberian pine seeds Pinus pumila (Pall.) Regel from places of natural growth and collected from plants introduced in northwestern Russia by microfocus X-ray radiography to predict their sowing qualities. Biological Communications. 2020, vol. 65, no. 4, pp. 297–306. doi: 10.21638/spbu03.2020.403
26. Zubova A. V., Pikhur O. L., Obodovskiy A. V., Malyutina A. A., Dmitrenko L. M., Chugunova K. S., Pozdnyakov D. V., Bessonov V. B. A Case of Surgical Extraction of the Lower Third Molars in a Cranial Series from the Pucara de Tilcara Fortress (Jujuy Province, Argentina). Archaeology, Ethnology and Anthropology of Eurasia. 2020, vol. 48, no. 2, pp. 149–156. doi: 10.17746/1563-0110.2020.48.2.149-156
Review
For citations:
Bessonov V.B. Microfocus X-ray Tubes. Journal of the Russian Universities. Radioelectronics. 2021;24(5):6-21. (In Russ.) https://doi.org/10.32603/1993-8985-2021-24-5-6-21