A Ku-Band Foldable Reflectarray Based on a Maltese-Cross Microstrip Element
https://doi.org/10.32603/1993-8985-2021-24-4-37-47
Abstract
Introduction. Reflectarrays have a number of design and functional advantages over their closest analogue - reflector antennas (RA). Although microstrip elements are the most preferred reflectarray elements, single-layer microstrip elements do not allow accurate phase control due to the limited phase adjustment range and a high phase slope. The use of multilayer elements significantly complicates the antenna design and increases its cost. The development of a single-layer element that allows more than 360° phase adjustment and a low phase curve slope is urgent.
Aim. To develop a single-layer microstrip phase-correcting element with a phase adjustment range of more than 360° and to design a reflectarray on its basis for operation in satellite communication networks.
Materials and methods. Numerical studies were carried out using finite element analysis and the finite-difference time-domain method. Radiation patterns were measured using the near-field scanning method in an anechoic chamber.
Results. A phase-correcting element based on a single-layer Maltese cross-shaped microstrip element with close to linear dependence of element size on the phase of the reradiated wave and more than 360° phase adjustment range was developed. On the basis of the investigated element, a foldable reflectarray was designed. The reflector consists of four subarrays, which provide its compact folding for transportation. The results of experimental studies confirmed a high efficiency of the reflectarray, the gain of which is 1.5 dB lower than that of an identical overall dimensions RA in a 7 % operating frequency band. The operating frequency band of the reflectarray in 1 dB gain zone was 11 %.
Conclusion. On the basis of a Maltese cross microstrip element, it is possible to implement a single-layer reflectarray with a more than 10 % frequency band. The developed prototype showed the possibility of creating highly efficient foldable reflectarrays for operation in satellite communication and television terminals.
About the Authors
S. V. PolengaRussian Federation
Stanislav V. Polenga, Master’s degree in Radio Engineering (2009), senior lecturer of the Department of Radio Engineering
79 Svobodny Ave., Krasnoyarsk 660041
R. O. Ryazantsev
Russian Federation
Roman O. Ryazantsev, Cand. Sci. (Eng.) (2019), associate professor of Department of Radio Engineering
79 Svobodny Ave., Krasnoyarsk 660041
A. D. Poligina
Russian Federation
Anastasia D. Poligina, Master’s degree in Radio Engineering (2021)
79 Svobodny Ave., Krasnoyarsk 660041
R. M. Krylov
Russian Federation
Roman M. Krylov, engineer on Design and Engineering of Electronic Equipment (2009), engineer of the Department of Radio Engineering
79 Svobodny Ave., Krasnoyarsk 660041
E. A. Litinskaya
Russian Federation
Elena A. Litinskaya, Master’s degree in Radio Engineering (2011), postgraduate student, senior lecturer of the Department of Radio Engineering
79 Svobodny Ave., Krasnoyarsk 660041
Yu. P. Salomatov
Russian Federation
Yury P. Salomatov, Cand. Sci. (Eng.) (1982), Professor (2013) of the Department of Radio Engineering
79 Svobodny Ave., Krasnoyarsk 660041
References
1. Polenga S. V., Stankovsky A. V., Litinskaya Y. A., Krylov R. M., Alexandrin A. M., Salomatov Y. P. A Ku-band foldable reflectarray. XIV Intern. Scientific-Technical Conf. on Actual Problems of Electronics Instrument Engineering (APEIE). Novosibirsk, Russia, 2–6 Oct. 2018. Piscataway, IEEE, 2018, acc. no. 18303692. doi: 10.1109/APEIE.2018.8545456
2. Chen Y. S., Wu Y. H., Chung C. C. Solar–powered active integrated antennas backed by a transparent reflectarray for cubesat applications. IEEE Access. 2020, vol. 8, pp. 137934–137946. doi: 10.1109/ACCESS.2020.3012133
3. An W., Xiong L., Xu S., Yang F., Fu H., Ma J. A Kaband high–efficiency transparent reflectarray antenna integrated with solar cells. IEEE Access. 2018, vol. 6, pp. 60843–60851. doi: 10.1109/ACCESS.2018.2875359
4. Polenga S. V., Litinskaya Y. A., Salomatov Y. P., Krylov R. M. Reflectarray antenna for bidirectional VSAT satellite communication networks. Achievements of modern radioelectronics. 2012, no. 9, pp. 39–42.
5. Ballandovich S. V., Liubina L. M., Sugak M. I. Investigation of slot reflectarray antennas. Moscow Workshop on Electronic and Networking Technologies (MWENT). Moscow, Russia, 14–16 March 2018. Piscataway, IEEE, 2018, acс. no. 17715494. doi: 10.1109/MWENT.2018.8337282
6. Chen B., Yi H., Ng K. B., Qu S., Chan C. H. 3D printed reflectarray antenna at 60 GHz. Intern. Symp. on Antennas and Propagation (ISAP). Okinawa, Japan, 24–28 Oct. 2016. Piscataway, IEEE, 2016, acc. no. 16602081.
7. Antonov Y., Ballandovich S., Kostikov G., Liubina L., Sugak M. Wideband 3D–printed reflectarray of closed–volume elements. 10th Intern. Congress on ultra modern telecommunications and control systems and workshops (ICUMT). Moscow, Russia, 5–9 Nov. 2018. Piscataway, IEEE, 2018, acc. no. 18439590. doi: 10.1109/ICUMT.2018.8631236
8. Polenga S. V., Erokhin A. A., Krylov R. M., Stankovsky A. V., Litinskaya Y. A., Hudonogova A. D., Danilov I. Y., Salomatov Yu. P. A Ka–band shaped–beam circularly polarized reflectarray antenna. Radiation and Scattering of Electromagnetic Waves (RSEMW). Divnomorskoe, Russia, 24–28 June 2019. Piscataway, IEEE, 2019, acc. no. 18904513. doi: 10.1109/RSEMW.2019.8792697
9. Zhao G., Jiao Y., Zhang F. Broadband design of a shaped beam reflectarray with China coverage pattern. Proc. of the 9th Intern. Symp. on Antennas, Propagation and EM Theory. Guangzhou, China, 29 Nov. – 2 Dec. 2010. Piscataway, IEEE, 2010, acc. no. 11772827. doi: 10.1109/ISAPE.2010.5696447
10. Patel V., Mevada P., Pujara D., Chakrabarty S., Mahajan M. Analysis of multi–faceted reflectarray antenna for spatial bandwidth improvement. IEEE Intern. Symp. on Antennas and Propagation and North American Radio Science Meeting. Montreal, Canada, 5–10 July 2020. Piscataway, IEEE, 2020, acc. no. 20465479. doi: 10.1109/IEEECONF35879.2020.9329895
11. Mohammadirad M., Komjani N., Chaharmir M. R., Shaker J., Sebak A. R. Impact of feed position on the operating band of broadband reflectarray antenna. IEEE Antennas and Wireless Propagation Lett. 2012, vol. 11, pp. 1104– 1107. doi: 10.1109/LAWP.2012.2218563
12. Carrasco E., Encinar J. A., Barba M. Bandwidth improvement in large reflectarrays by using true-time delay. IEEE Trans. on Antennas and Propagation. 2008, vol. 56, no. 8, pp. 2496–2503. doi: 10.1109/TAP.2008.927559
13. Encinar J. A. Design of two-layer printed reflectarrays using patches of variable size. IEEE Trans. on Antennas and Propagation. 2001, vol. 49, no. 10, pp. 1403–1410. doi: 10.1109/8.954929
14. Robustillo P., Zapata J., Encinar J. A., Rubio J. ANN characterization of multi-layer reflectarray elements for contoured-beam space antennas in the Ku-band. IEEE Trans. on Antennas and Propagation. 2012, vol. 60, no. 7, pp. 3205–3214. doi: 10.1109/TAP.2012.2196941
15. Chen H.–H., Zhang W.–X., Wu Z.–H., Sun H.–L. Study on three-layer refelectarray microstrip patches with polarisation transform. First Europ. Conf. on Antennas and Propagation. Nice, France, 6–10 Nov. 2006. Piscataway, IEEE, 2018, acc. no. 10152828. doi: 10.1109/EUCAP.2006.4584622
16. Daud M. A., Misran N., Mansor M. F., Ismail M. Y. Capacitive loading effect of dual element reconfigurable reflectarray unit cell. IEEE 14th Malaysia Intern. Conf. on Communication (MICC). Selangor, Malaysia, 2–4 Dec. 2019. Piscataway, IEEE, 2019, acc. no. 19471408. doi: 10.1109/MICC48337.2019.9037584
17. S. Yu, H. Zhang, S. Liu, B. Bian A design of a broadband single layer polarization beam splitting reflectarray using varying-sized cross dipoles./ Progress In Electromagnetics Research Symposium – Spring (PIERS). St Petersburg, Russia, 22–25 May 2017. Piscataway, IEEE, 2017, acc. no. 17521116. doi: 10.1109/PIERS.2017.8261835
Review
For citations:
Polenga S.V., Ryazantsev R.O., Poligina A.D., Krylov R.M., Litinskaya E.A., Salomatov Yu.P. A Ku-Band Foldable Reflectarray Based on a Maltese-Cross Microstrip Element. Journal of the Russian Universities. Radioelectronics. 2021;24(4):37-47. (In Russ.) https://doi.org/10.32603/1993-8985-2021-24-4-37-47