Preview

Journal of the Russian Universities. Radioelectronics

Advanced search

Magnetic and Plasmonic Composite Nanostructures for Creating Optical Filters at Substance and Material Diagnostics Systems

https://doi.org/10.32603/1993-8985-2021-24-3-81-97

Abstract

Introduction. Porous silicon (PS) and materials on its basis are of interest for application in nanoelectronics, targeted drug delivery and advanced gas sensors. In addition, PS-based nanostructures are promising as filters in fibre-optic communication systems, since conventional thin-film deposition filters possess sidebands in their operating range thus requiring high vacuum for nanometer-thick coatings.
Aim. To develop optical band-stop filter prototypes based on composite magnetic nanoparticles and the effect of localized surface plasmon resonance (LSPR) in an array of silver nanoparticles located on the PS surface.
Materials and methods. The development and synthesis of nanostructures for the creation of filter prototypes. The double differentiation method in conjunction with Mie absorption theory was used for processing and analyzing the prototypes attenuation characteristics.
Results. Two prototypes were developed. An analysis of the attenuation characteristics of a prototype based on SiO2 matrix functionalized by FemOn indicated that the parameters of the detected absorption bands depend on the size of FemOn nanoparticles. The attenuation characteristics of the LSPR-based prototype contain two absorption bands. The center wavelength value in the band caused by LSPR in the array of silver nanoparticles, close to spherical, is 367.5 nm. Excitation of LSPR in silver quantum clusters, manifested by the appearance of the corresponding band, occurs at a wavelength of 265.5 nm. The suppression in each of the bands can be controlled by changing the parameters of the PS matrix synthesis.
Conclusion. Despite the disadvantages, e.g. a relatively low accuracy in setting the center wavelength, as well as certain difficulties concerned with reducing the unevenness in the absorption band, the obtained prototypes surpass existing analogues and are prospective for the development of compact analysis and diagnostics systems in a wide energy range.

About the Authors

R. S. Smerdov
Saint Petersburg Mining University
Russian Federation

Rostislav S. Smerdov, Applicant for the degree of Cand. Sci. (Eng.) in the specialty 05.11.13 Instruments and methods for monitoring the natural environment, substances, materials and products. The author of more than 30 scientific publications including 14 papers indexed in the international databases Scopus and WoS (1 paper in Q2 journal). Area of expertise: nanoelectronics, electron emission and interaction of light with matter.

2, 21 Line St., St Petersburg 199106



Yu. M. Spivak
Saint Petersburg Electrotechnical University
Russian Federation

Yulia M. Spivak, Cand. Sci. (Phys.-Math.) (2009), Assistant professor (2015), assistant professor at the Microand Nanoelectronics Department. The author of more than 170 scientific publications. Area of expertise: characterization of nanomaterials, theranostics, thin-film nanotechnology.

5 Professor Popov St., St Petersburg 197376



V. A. Moshnikov
Saint Petersburg Electrotechnical University
Russian Federation

Vyacheslav A. Moshnikov, Dr. Sci. (Phys.-Math.) (1997), professor (1999), Deputy Head of the Micro- and Nanoelectronics Department. The author of more than 450 scientific publications. Area of expertise: nanotechnology and diagnostics.

5 Professor Popov St., St Petersburg 197376



A. S. Mustafaev
Saint Petersburg Mining University
Russian Federation

Alexander S. Mustafaev, Dr. Sci. (Phys.-Math.) (2004), Head of the General and Applied Physics Department, Member of the American Physical Society. The author of more than 160 scientific publications. Area of expertise: plasma energy and new developments in plasma nanotechnology.

2, 21 Line St., St Petersburg 199106



References

1. Porous Silicon as a Nanomaterial for Disperse Transport Systems of Targeted Drug Delivery to the Inner Ear / Yu. M. Spivak, A. O. Belorus, A. A. Panevin, S. G. Zhuravskii, V. A. Moshnikov, K. Bespalova, P. A. Somov, Yu. M. Zhukov, A. S. Komolov, L. V. Chistyakova, N. Yu. Grigor’eva // Technical Physics. 2018. Vol. 63. P. 1352–1360. doi: 10.1134/S1063784218090207

2. The Multisensor Array Based on Grown-On-Chip Zinc Oxide Nanorod Network for Selective Discrimination of Alcohol Vapors at Sub-ppm Range / A. Bobkov, A. Varezhnikov, I. Plugin, F. S. Fedorov, V. Trouillet, U. Geckle, M. Sommer, V. Goffman, V. Moshnikov, V. Sysoev // Sensors. 2019. Vol. 19, № 19. P. 1–13. doi: 10.3390/s19194265

3. Bobkov A. A., Nalimova S. S., Moshnikov V. A. Fractal structure and electrical properties of percolation sensor layers // Smart Nanocomposites. 2016. Vol. 6, iss. 2. P. 264-265.

4. Porous silicon as efficient surface enhanced Raman scattering (SERS) substrate / F. Giorgis, E. Descrovi, A. Chiodoni, E. Froner, M. Scarpa, A. Venturello, F. Geobaldo // Applied Surface Science. 2008. Vol. 254. P. 74947497. doi: 10.1016/j.apsusc.2008.06.029

5. Lapshin B. A. Opticheskie geterostruktury. Novaya teoriya i raschet [Optical heterostructures. New theory and calculation]. SPb, BKhV-Peterburg, 2012, 480 p. (In Russ.)

6. Chmilenko F., Rastvorova I. Improvement of quality of aluminum ingots at electromagnetic processing // J. Phys. Conf. Ser. 2018. Vol. 1118. P. 1–5. doi: 10.1088/1742-6596/1118/1/012030

7. Denisova O., Rastvorova I. Carbon Materials for Immobilization of Biologically Active Substances // Engineering Materials. 2020. Vol. 836. P. 52–57. doi: 10.4028/www.scientific.net/kem.836.52

8. Micromechanics, Nanophysics And Non-Destructive Testing Of The Strength Of Structural Materials / V. Nosov, I. Chaplin, E. Gilyazetdinov, E. Grigoriev, I. Pavlenko // Mater. Phys. Mech. 2019. Vol. 42. P. 808–824. doi: 10.18720/MPM.4262019_13

9. Shpenst V. A. Investigation of the State Of Materials of Power Lines by Multispectral Optical-Electronic Devices // Iop Conf. Ser. Earth Environ. Sci. 2019. Vol. 378. P. 1–5. doi. 10.1088/1755-1315/378/1/012072

10. Shpenst V. A. Complexation of Telecommunications and Electrical Systems in Mines and Underground Facilities // J. Min. Inst. 2019. Vol. 235. P. 78–87. doi: 10/31897/PMI.2019.1.78

11. Multilevel Model of Time Dependences of Acoustic Emission Parameters as The Basis for Nanodiagnostics of The State of Technical Objects / V. V. Nosov, A. P. Artyushchenko, S. A. Peretyatko, E. D. Khokhlova // J. Phys. Conf. Ser. 2020. Vol. 1582. P. 1–6. doi: 10.1088/1742-6596/1582/1/012067

12. Fabrication of oxide heterostructures for promising solar cells of a new generation / A. A. Bobkov, N. A. Lashkova, A. I. Maximov, V. A. Moshnikov, S. S. Nalimova // Semiconductors. 2017. Vol. 51, iss. 1. P. 61–65. doi: 10.1134/S1063782617010031

13. Nano-size effects in graphite/graphene structure exposed to cesium vapor / A. S. Mustafaev, V. I. Yarygin, V. S. Soukhomlinov, A. B. Tsyganov, I. D. Kaganovich // J. of Applied Physics. 2018. Vol. 124, iss. 12. P. 1–10. doi: 10.1063/1.5037028

14. Rhombic silver nanoparticles array-based plasmonic filter / Y. Q. Fu, S. L. Zhu, X. L. Zhou, W. Zhao // Intern. J. of Modern Physics B. 2011. Vol. 25. P. 2557–2566. doi: 10.1142/S0217979211101168

15. A tunable optical filter / J. Philip, T. Jaykumar, P. Kalyanasundaram, B. Raj // Measurement Science and Technology. 2003. Vol. 14, iss. 8. P 1289–1294. doi: 10.1088/0957-0233/14/8/314

16. Tunable magneto-optical wavelength filter of long-period fiber grating with magnetic fluids / T. Liu, X. Chen, Z. Di, J. Zhang, X. Li, J. Chen // Applied Physics Lett. 2007. Vol. 91, iss. 12. P. 1–3. doi: 10.1063/1.2787970

17. Gareev K. G., Nepomnyashchaya E. K. Obtaining and Characterizing a Water-Based Magnetic Fluid // Bulletin of the Russian Academy of Sciences: Physics. 2019. Vol. 83, iss. 7. P. 904-905. doi. 10.3103/S1062873819070177

18. Spectroscopic Properties of γ-irradiated Fem On SiO 2 Composite Nanoparticles / R. S. Smerdov, T. V. Bocharova, V. S. Levitskii, E. I. Terukov, K. G. Gareev, V. A. Moshnikov // Physics of the Solid State. 2016. Vol. 58, iss. 5. P. 919-923. doi: 10.1134/S1063783416050243

19. UV-Vis Band-Stop Filter Based on Plasmon Resonance for Fluorescent Microscopic Applications / R. Smerdov, V. Loboda, Y. Spivak, V. Moshnikov // St Petersburg State Polytechnical University J. Computer Science. Telecommunications and Control Systems. 2016. Vol. 247, iss. 3. P. 13–22. doi: 10.5862/jcstcs.247.2

20. Unno H., Imai K., Muramoto S. Dissolution Reaction Effect on Porous-Silicon Density // J. of the Electrochemical Society. 1987. Vol. 243, iss. 24. P. 358–362.

21. Levy P. The Kinetics of Gamma-Ray Induced Coloring of Glass // J. of the American Ceramic Society. 2006. Vol. 43, № 8. P. 389–395. doi: 10.1111/j.1151-2916.1960.tb13680.x

22. Kreibig U. Small Silver Particles in Photosensitive Glass: Their Nucleation and Growth // Appl. Phys. 1976. Vol. 10, № 3. P. 255–264.

23. Gareev K. G., Luchinin V. V., Moshnikov V. A. Magnetic Nanomaterials Obtained by Chemical Methods // Biotechnosfera. 2013. № 5 (29). P. 2–13.

24. Nepomnyashchaya E., Aksenov E., Velichko E. Molecular Dynamics as Studied by Laser Correlation Spectroscopy // Proc. of 38 th Progress in Electromagnetics Research Symp., St Petersburg, SPbGU, St Petersburg, 2017. P. 3556–3562. doi: 10.1109/PIERS.2017.8262375

25. Mayergoyz I. D. Plasmon Resonances in Nanoparticles. Singapore: World Scientific Publishing Co Pte. Ltd., 2013. Vol. 6. 325 p.

26. Bernard S., Kutter J. P., Mogensen K. B. Plasmon enhanced silver quantum cluster fluorescence for biochemical applications // TechConnect Briefs. 2014. Vol. 2. P. 443–446.

27. Rabilloud F. Description of plasmon-like band in silver clusters: The importance of the long-range HartreeFock exchange in time-dependent density-functional theory simulations // The J. of Chemical Physics. 2014. Vol. 141, iss. 14. P. 1–9. doi: 10.1063/1.4897260

28. Weissker H., Lopez-Lozano X. Surface plasmons in quantum-sized noble-metal clusters: TDDFT quantum calculations and the classical picture of charge oscillations // Phys. Chemistry Chem. Phys. 2015. Vol. 17, iss. 42. P. 28379–28386. doi: 10.1039/C5CP01177A

29. Mori T., Hegmann T. Determining the composition of gold nanoparticles: a compilation of shapes, sizes, and calculations using geometric considerations // J. of Nanoparticle Research. 2016. Vol. 18, iss. 10. P. 1–36. doi: 10.1007/s11051-016-3587-7

30. The characterisation of nanostructured porous silicon/silver layers via Raman spectroscopy / R. S. Smerdov, Y. M. Spivak (Kanageeva) , V. S. Levitsky, V. A. Moshnikov // J. of Physics Conf. Series. 2018. Vol. 1038. P. 1–4. doi: 10.1088/1742-6596/1038/1/012064

31. Optically tunable plasmonic color filters / Y. J. Liu, G. Y. Si, E. S. P. Leong, B. Wang, A. J. Danner, X. C. Yuan, J. H. Teng // Applied Physics A. 2012. Vol . 107, iss. 1. P. 49–54. doi: 10.1007/s00339-011-6736-y


Review

For citations:


Smerdov R.S., Spivak Yu.M., Moshnikov V.A., Mustafaev A.S. Magnetic and Plasmonic Composite Nanostructures for Creating Optical Filters at Substance and Material Diagnostics Systems. Journal of the Russian Universities. Radioelectronics. 2021;24(3):81-97. (In Russ.) https://doi.org/10.32603/1993-8985-2021-24-3-81-97

Views: 558


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1993-8985 (Print)
ISSN 2658-4794 (Online)