Preview

Journal of the Russian Universities. Radioelectronics

Advanced search

Accuracy Characteristics of the Parametric Burg Method for Spatial Signal Processing in a Nonuniform Array Antenna

https://doi.org/10.32603/1993-8985-2021-24-3-60-71

Abstract

Introduction. In the case of a nonuniform (NU) design of the antenna elements (AEs) of the receiving antenna array (AA), the antenna pattern (AP) features sidelobes (SL) with a significantly higher noise level than acceptable values. Under low signal-to-noise ratios (SNR), this noise leads to angular coordinate measuring errors thus worsening the statistical accuracy characteristics (ACs) of the signal. It is of relevance to construct the ACs of angular coordinates when a modified parametric Burg method (BM) is applied to spatial reflected signal processing in a transportable decametre range radar (DRR) with a nonuniform array (NUA) and linear accuracy characteristics.
Aim. To analyse the statistical ACs of angular coordinate objects when using a modified BM for spatial reflected signal processing in a DRR with a linear NUA, in which AEs are located with a random step in the range from λ/2 to several λ, where λ is the operating carrier wavelength.
Materials and methods. Statistical ACs were constructed by computer modelling in the MatLab software, the reliability of which was confirmed by conventional discrete Fourier transform methods, as well as by comparing the obtained ACs with asymptotic bounds, including Cramer-Rao bounds.
Results. The possibility and conditions of using a modified parametric BM for estimating the azimuthal coordinates of reflected radar signals were determined for the case of a nonuniform design of the over-the-horizon DRR receiving AA AEs. Statistical ACs were obtained and compared with the asymptotically optimal ACs of the maximum likelihood estimations corresponding to the uniform AE design.
Conclusion. The obtained results confirm the suboptimality of the BM modified for signal processing in the NUA at a random AE spacing step in the range from λ/2 to 2λ, making it applicable for use in transportable DRRs.

About the Authors

V. M. Kutuzov
Saint Petersburg Electrotechnical University
Russian Federation

Vladimir M. Kutuzov, Dr. Sci (Eng.) (1997), Professor, Head of the Department of Radio Engineering Systems, President. Authored more than 270 scientific and educational publications in Russian and foreign magazines, including 2 monographs, 12 author's certificates and patents. Area of expertise: radiolocation.

5 Professor Popov St., St Petersburg 197376



M. A. Ovchinnikov
Saint Petersburg Electrotechnical University
Russian Federation

Mihail A. Ovchinnikov, Master in Specialty "Radio Engineering" (2019), postgraduate student of the Department of Radio Engineering Systems, authored of 5 scientific publications. Area of expertise: radiolocation.

5 Professor Popov St., St Petersburg 197376



E. A. Vinogradov
KU Leuven
Belgium

Evgenij A. Vinogradov, Dr. Sci (Eng.) (2017), research associate of electrical engineering department (ESAT). His doctoral research interests focused on multidimensional radio propagation channel modeling. He has authored over 20 publications in major academic journals and conferences. Area of expertise: MIMO systems, wireless communications with UAVs, UAV detection.

10 Kasteelpark Arenberg, 3001 Leuven



References

1. Skolnik M. I. Radar Handbook, Third Edition. Ed. 2. tr. from eng. V. S. Verbi. М., Tehnosfera, 2015, 680 p. (In Russ.)

2. Shirman Ja. D., Losev Ju. I., Minervin N. N., Moskvin S. V., Gorshkov S. A., Lihovitskij D. I., Levchenko L. S. Radiojelektronnye sistemy: osnovy postroenija i teorija. Spravochnik [Radioelectronic systems: foundations of construction and theory. Directory]. M., ZAO "MAKVIS", 1998, 828 p. (In Russ.)

3. Alebastrov V. A., Gojhman Je. Sh., Zamorin I. M. Osnovy zagorizontnoj radiolokacii [The basics of over-thehorizon radar]. M., Radio i svjaz', 1984, 257 p. (In Russ.)

4. Dzvonkovskaya A., Gurgel K.-W. Future Contribution of HF Radar WERA to Tsunami Early Warning Systems. Europ. J. of Navigation. Aug., 2009, vol. 7, no. 2, pp. 1-7.

5. Kutuzov V. M., Barhatov A. V., Bezuglov A. V., Verem'ev V. I., Konovalov A. A. Osnovy proektirovanija mnogopozicionnyh dekametrovyh RLS prostranstvennoj volny [Design fundamentals for multi-position decameter skywave radars]. SPb, Izd-vo SPbGETU "LETI", 2012, 191 p. (In Russ.)

6. Zhuravlev A. K., Hlebnikov V. A., Radimov A. P. Adaptivnye radiotehnicheskie sistemy s antennymi reshetkami [Adaptive radio systems with antenna arrays]. L.: Izd-vo Leningradskogo universiteta, 1991, 544 p. (In Russ.)

7. Skolnik M. I. Radar Handbook, Third Edition. Ed. 1. tr. from eng. V. S. Verbi. М., Tehnosfera, 2015, 671 p. (In Russ.)

8. Karavaev V. V., Sazonov V. V. Statisticheskaja teorija passivnoj lokacii [Statistical theory of passive location]. M., Radio i svjaz', 1987, 240 p. (In Russ.)

9. Oroshhuk I. M., Suchkov A. N., Vasilenko A. M. Monitoring of the sea surface correlation spatial filter decameter range. Mining information and analytical bulletin (scientific and technical journal). Selected articles (special issue). 2014, iss. S12-3, pp. 77-87. (In Russ.)

10. Oroshhuk I. M., Suchkov A. N. Possibilities of using nonlinear digital antenna arrays in the decameter range. Vest. inzhenernoj shkoly DVFU [FEFU Engineering School Bulletin]. 2015, no. 2 (23), pp. 17-26. (In Russ.)

11. Eydus А., Anpilogov V. A non-equidistant antenna array with a low level of side lobes. Available at: http://lib.tssonline.ru/articles2/sputnik/neekvidistantnaya-antennaya-reshetka-s-nizkim-urovnem-bokovyhlepestkov (accessed 16.03.2021) (In Russ.)

12. Fedoseeva E. V., Tarasov A. A. Research of a method of synthesis unequally spaced and with identical amplitude antenna array. Radiotehnicheskie i telekommunikacionnye sistemy [Radio engineering and telecommunication systems]. 2011, no. 3, pp. 4-8. (In Russ.)

13. Kutuzov V. M., Ovchinnikov M. A., Vinogradov E. A. Detection Characteristics of the Parametric Method of Signal Processing in a Sparse Antenna Array of a Transportable Decameter Range Radar. J. of the Russian Universities. Radioelectronics. 2020, vol. 23, no. 6, pp. 43–58. doi: 10.32603/1993-8985-2020-23-6-43-58 (In Russ.)

14. Chernjak V. S. Mnogopozicionnaja radiolokacija [Multiposition radar]. M., Radio i svjaz'. 1993, 416 p. (In Russ.)

15. Fal'kovich S. E., Ponomarev V. I., Shkvarko Yu. V. Optimal'nyj priem prostranstvenno-vremennyh signalov v radiokanalah s rassejaniem [Optimal reception of space-time signals in radio channels with scattering]. Ed. S. E. Fal'kovich. M., Radio i svjaz', 1989, 296 p. (In Russ.)

16. Trifonov A. P., Shinakov Ju. S. Sovmestnoe razlichenie signalov i ocenka ih parametrov na fone pomeh [Joint discrimination of signals and assessment of their parameters against the background of interference]. M., Radio i svjaz', 1986, vol. 26, 264 p. (In Russ.)

17. Kutuzov V. M. Autoregressive signal processing in quasiconformal piecewise continuous antenna arrays. J. of the Russian Universities. Electronics, 2001, no. 4, pp. 93–100. (In Russ.)

18. Kutuzov V. M. Space-Time Data Processing with Breaks Based on the Parametric Models. Proc. Internat. Radar Symp. IRS-2004, 19-21 May 2004, Warszawa, Poland. Warsaw University of Technology. P. 391-399.

19. Kutuzov V. M., Sotnikov A. A. Model-parametric technologies of discontinuous data processing. J. of the Russian Universities. Radioelectronics. 2005, no. 2, pp. 3-10 (In Russ.)

20. Kutuzov V. M., Sotnikov A. A. Model-Parametrical Spatial Signals Processing Use in Radar with Mechanical Scanning Antenna. Proc. Intern. Radar Symp. IRS-2005, Berlin, Germany, 6-8 Sept., 2005. German Institute of Navigation, 2005, pp. 589-592.

21. Hajkin S. O., Karri B. U., Kesler S. B. Maximum Entropy Spectral Analysis of Radar Clutter. TIIER. 1982, vol. 70, no. 9, pp. 51-62 (In Russ.)

22. Marple Jr. S. L. Digital spectral analysis: with applications. Ed. О. I. Habarov. M., Mir, 1990, 584 p. (In Russ.)

23. Kay S. M. Modern Spectral Estimation. New Jersey, Prentice-Hall, Inc., Englewood Cliffs, 1987, 543 p.

24. Haykin S. O. Adaptive Filter Theory. 4 th ed. Upper Saddle River. New Jersey, Prentice-Hall, Inc., 2002, 936 p.

25. Gorbunov Ju. N., Lobanov B. S., Kulikov G. V. Vvedenie v stohasticheskuju radiolokaciju [An introduction to stochastic radar]. M., Gorjachaja linija – Telekom, 2015, 376 p. (In Russ.)

26. Kutuzov V. M., Mazurov K. A. Multi-segment autoregressive algorithm of complex modulated signals processing: accuracy characteristics. J. of the Russian Universities. Radioelectronics. 2012, no. 3, pp. 53-59 (In Russ.)

27. Lang S. W., McClellan J. M. Frequency estimation with maximum entropy spectral estimators. IEEE Transactions on acoustics, speech and signal processing. 1980, vol. 28, iss. 6, pp. 716-724. doi: 10.1109/TASSP.1980.1163467


Review

For citations:


Kutuzov V.M., Ovchinnikov M.A., Vinogradov E.A. Accuracy Characteristics of the Parametric Burg Method for Spatial Signal Processing in a Nonuniform Array Antenna. Journal of the Russian Universities. Radioelectronics. 2021;24(3):60-71. (In Russ.) https://doi.org/10.32603/1993-8985-2021-24-3-60-71

Views: 621


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1993-8985 (Print)
ISSN 2658-4794 (Online)