Preview

Journal of the Russian Universities. Radioelectronics

Advanced search

Methods for Complexing Images Formed by Multi-Band Synthetic Aperture Radars

https://doi.org/10.32603/1993-8985-2021-24-3-6-21

Abstract

Introduction. Synthetic aperture radars (SAR) are important components of aviation-based systems for remote sensing of the Earth. The current level of such systems allows simultaneous radar surveys in several frequency ranges. Such surveys require complexing of the images formed in each of the frequency channels, which task is yet to be resolved.
Aim. To review the formation principles and methods for joint processing of images using space and aviation-based multi-band synthetic aperture radar systems.
Materials and methods. The methodology of systems analysis, involving the integral stages of decomposition, analysis and synthesis, was used. Decomposition of integrating multi-band radar images was performed considering the effect of various factors on the characteristics of radar images in different frequency ranges. Such factors include the principles of radar imaging, issues of radar images of multi-band synthetic aperture radars with real characteristics, and complexing levels.
Results. According to the classical systems approach, the results of review and analysis are corresponded by appropriate conclusions on the shortcomings of each decomposition element and the synthesis of a proposal for achieving the goal. It was shown that joint processing of multi-band radar images can be carried out at the levels of signals, pixels, features and solutions, as well as their aggregates. Each approach is characterised by its shortcomings, which impede implementation of full integration of multi-band radar images without loss of information, which is due to the absence of information redundancy of radar images, compared to, e.g., optical images.
Conclusion. Recommendations on the application of a particular method and the synthesis of a system for radar complexing images based on the texture-fractal approach were formulated. Directions for further work meeting all the requirements for completeness, reliability and information content of remote sensing of the Earth were outlined.

About the Authors

A. A. Potapov
V. A. Kotelnikov Institute of Radio Engineering and Electronics
Russian Federation

Alexander A. Potapov, Dr. Sci. (Phys.-Math.) (1994), Chief Research of V. A. Kotel’nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences (2002), Academician of Russian Academy of Natural Sciences (2007, Russia), Academician of the Academy of engineering science of A. M. Prokhorov (2008, Russia), Honorary Professor of the Eurasian National University (Kazakhstan, Astana, 2010), Honorary Professor of the University of Jinan (China, Guangzhou, 2011). President of the Sino-Russian Laboratory of Informational Technologies and Signals Fractal Processing (2012), member of the Nizhny Novgorod Mathematical Society (2017). Author of over 1150 scientific publications in domestic and foreign publications, including two patents and 45 monographs and chapters in books in Russian and English. Area of expertise: statistical radio physics, scattering and diffraction of electromagnetic waves, radar, image and signal processing and recognition, deterministic chaos, modern topology, fractal analysis, fractional operators, scaling effects, fractal antennas, fractal electrodynamics, photonics, metamaterials and metasurfaces.

11-7 Mokhovaya St., Moscow, 125009



V. A. Kuznetsov
MERC AF "Air Force Academy named after professor N. E. Zhukovsky and Yu. A. Gagarin"
Russian Federation

Viktor A. Kuznetsov, Cand. Sci. (Eng.) (2012), Assistant professor (2019). Author of over 140 scientific publications. Area of expertise: systems analysis, pattern recognition, radar, fractal theory.

54A Starykh Bolshevikov St., Voronezh, 394064



E. A. Alikulov
MERC AF "Air Force Academy named after professor N. E. Zhukovsky and Yu. A. Gagarin"
Russian Federation

Elbek A. Alikulov, postgraduate (2019). Author of over 10 scientific publications. Area of expertise: radar, fractal radar image fusion.

54A Starykh Bolshevikov St., Voronezh, 394064



References

1. Lihachev V. P., Kuprjashkin I. F., Rjazancev L. B. Malogabaritnye mnogofunkcional'nye RLS s nepreryvnym chastotno-modulirovannym izlucheniem [Smallsized multifunctional radar with continuous frequencymodulated radiation]. M., Radiotehnika, 2020. 279 p. (In Russ.)

2. Cheney M., Borden B. Synthetic Aperture Radar Imaging. In Scherzer O. (eds) Handbook of Mathematical Methods in Imaging. New York, Springer, 2015. doi: 10.1007/978-1-4939-0790-8_49

3. Soumekh M. Synthetic Aperture Radar Signal Processing with MATLAB Algorithms. New York, Wiley, 1999, 648 p.

4. Vnotchenko S. L., Dostovalov M. Ju. Aviation mobile small-size synthetic aperture radars of the "Compact" family (implementation principles and application experience). Zhurnal radiojelektroniki [Journal of radio electronics]. 2009, vol. 10. Available at: http://jre.cplire.ru/jre/oct09/5/text.html (accessed 27.04.2021) (In Russ.)

5. Gur'janov M. A. Conversion of the dynamic range of radar images for various surveyed surfaces. Zhurnal radiojelektroniki [Journal of radio electronics]. 2014, vol. 12. Available at: http://jre.cplire.ru/jre/dec14/9/text.html (accessed 27.04.2021) (In Russ.)

6. Kuznetsov V. A., Lihachev V. P., Unkovskij A. V. Matching radar images by the entropy of radar shadows of objects in the interests of two-pass interferometric survey. Radiotehnika [Journal Radioengineering]. 2021, vol. 85, no. 1, pp. 104–111. doi: 10.18127/j00338486-202101-14 (In Russ.)

7. Blinkovskij A. M., Krjukov S. V. Sposob poluchenija dvumernogo radiolokacionnogo izobrazhenija ob#ekta v bol'shom diapazone izmenenija velichin jeffektivnyh ploshhadej rasseivanija lokal'nyh centrov pri mnogochastotnom impul'snom zondirovanii [Method of obtaining two-dimensional radar image of object in wide range of Variation of values of effective scattering area of local centres during multifrequency pulsed probing]. Pat. RF 2372627. Publ. 24.03.2009. Bul. 31. (In Russ.)

8. Nikitin O. R., Kisljakov A. N., Shuljat'ev A. A. Sposob kompleksirovanija cifrovyh mnogospektral'nyh izobrazhenij zemnoj poverhnosti [Method for complexion digital multispectral images of earth's surface]. Pat. RF 2520424. Publ. 27.06.2014. Bul. 18. (In Russ.)

9. Tikmenov V. N., Kupcov S. V., Laptepa V. V., Kozlitin I. A. Sposob kompleksirovanija cifrovyh polutonovyh izobrazhenij [Method for integrating digital half-tone images]. Pat. 2540778. Publ. 10.02.2015. Bul. 4. (In Russ.)

10. Shipko V. V. Sposob kompleksirovanija cifrovyh polutonovyh izobrazhenij [Method of integrating digital halftone images]. Pat. RF 2692575. Publ. 25.06.2019. Bul. 18. (In Russ.)

11. Travina E. I., Fadeev I. N. Sposob kompleksirovanija cifrovyh mnogospektral'nyh polutonovyh izobrazhenij [Method of complexing digital multispectral half-tone images]. Pat. RF 2342701. Publ. 27.12.2008. Bul. 36. (In Russ.)

12. Karhe1 R. R., Chandratre Y. V. RADAR Image Fusion Using Wavelet Transform. International Journal of Advanced Engineering, Management and Science (IJAEMS). 2016, vol. 2, no. 3, pp. 4–13.

13. Simone G., Morabito F.C., Farina A. Multifrequency and Multiresolution Fusion of SAR Images for Remote Sensing Applications. Proc. of 4 th International Conf. on Information Fusion. 2001, pp. 1321–1327.

14. Multisensor Data Fusion. From Algorithms and Architectural Design to Applications. Ed. by H. Fourati, K. Iniewski. Taylor & Francis Group, 2016, 663 p. doi: 10.1201/b18851

15. Mandel'brot B. B. Fraktal'naja geometrija prirody [Fractal geometry of nature]. M., Institut komp'juternyh issledovanij, 2002, 656 p. (In Russ.)

16. Potapov A. A. Fraktaly v radiofizike i radiolokacii: Topologija vyborki [Fractals in Radiophysics and Radar: Sample Topology]. M., Universitetskaja kniga, 2005, 847 p. (In Russ.)

17. Potapov A. A., Hao W., Shan X. Fractality of Wave Fields and Processes in Radar and Control. Guangzhou, South China University of Technology Press, 2020, 280 p.

18. Guljaev Ju. V., Potapov A. A. Application of fractal theory, fractional operators, textures, scaling effects, and nonlinear dynamics methods in the synthesis of new information technologies in radio electronics (specifically, radiolocation). Radiotehnika i jelektronika [Journal of Communications Technology and Electronics]. 2019, vol. 64, no. 9, pp. 839–854. (In Russ.)

19. Kuznetsov V. A. Structure and properties of ground objects on SAR images in recognition problems. Telekommunikacii [Telecommunications]. 2012, vol. 10, pp. 31–38. (In Russ.)

20. Kuznetsov V. A., Pototskii A. N. Method of measuring directional morphological multifractal signatures of the texture images. Uspehi sovremennoj radiojelektroniki [Telecommunications and Radio Engineering]. 2017, vol. 3, pp. 39–52. (In Russ.)

21. Potapov A. A., Kuznetsov V. A., Pototskii A. N. New Class of Topological Textural Multifractal Descriptors and Their Application for Processing Low-Contrast Radar and Optical Images. Journal of Communications Technology and Electronics. 2021, vol. 66, no. 5, pp. 581–590. doi: 10.1134/S1064226921050090

22. Potapov A. A., Kuznetsov V. A., Alikulov E. A. Sposob fraktal'nogo kompleksirovanija cifrovyh polutonovyh izobrazhenij [Method for fractal complexing of multifrequency radar images]. Pat. RF 2746038. Publ. 06.04.2021. Bul.10. (In Russ.)

23. Xia Y., Feng D., Zhao R. Morphology-Based Multifractal Estimation for Texture Segmentation. IEEE Transactions on Image Processing. 2006, vol. 15, no. 3, pp. 614–623. doi: 10.1109/TIP.2005.863029

24. Kuznetsov V. A., Maryuhnenko V. S. Sistemnyj podhod k resheniju problemy fraktal'nogo analiza mnogomernyh radiolokacionnyh izobrazhenij [System approach to solving the problem of multidimensional radar images fractal analysis]. Proc. XXIV Int. Scientific-technical Conference "Radiolocation, navigation, communication" 17–19 Apr. 2018. Voronezh, Vjelborn, 2018, vol. 2, pp. 26–38. (In Russ.)


Review

For citations:


Potapov A.A., Kuznetsov V.A., Alikulov E.A. Methods for Complexing Images Formed by Multi-Band Synthetic Aperture Radars. Journal of the Russian Universities. Radioelectronics. 2021;24(3):6-21. (In Russ.) https://doi.org/10.32603/1993-8985-2021-24-3-6-21

Views: 770


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1993-8985 (Print)
ISSN 2658-4794 (Online)