A Simple Algorithm for Compensation for Range Cell Migration in a Stripmap SAR
https://doi.org/10.32603/1993-8985-2021-24-2-27-37
Abstract
Introduction. Range Cell Migration (RCM) is a source of image blurring in synthetic aperture radars (SAR). There are two groups of signal processing algorithms used to compensate for migration effects. The first group includes algorithms that recalculate the SAR signal from the "along–track range – slant range" coordinate system into the "along-track range – cross-track range" coordinates using the method of interpolation. The disadvantage of these algorithms is their considerable computational cost. Algorithms of the second group do not rely on interpolation thus being more attractive in terms of practical application.
Aim. To synthesize a simple algorithm for compensating for RCM without using interpolation.
Materials and methods. The synthesis was performed using a simplified version of the Chirp Scaling algorithm.
Results. A simple algorithm, which presents a modification of the Keystone Transform algorithm, was synthesized. The synthesized algorithm based on Fast Fourier Transforms and the Hadamard matrix products does not require interpolation.
Conclusion. A verification of the algorithm quality via mathematical simulation confirmed its high efficiency. Implementation of the algorithm permits the number of computational operations to be reduced. The final radar image produced using the proposed algorithm is built in the true Cartesian coordinates. The algorithm can be applied for SAR imaging of moving targets. The conducted analysis showed that the algorithm yields the image of a moving target provided that the coherent processing interval is sufficiently large. The image lies along a line, which angle of inclination is proportional to the projection of the target relative velocity on the line-of-sight. Estimation of the image parameters permits the target movement parameters to be determined.
About the Author
A. A. MonakovRussian Federation
Andrey A. Monakov, Dr. Sci. (Eng.) (2000), Professor (2005) of the Department of radio equipment systems, Honorable Mechanical Engineer of the Russian Federation (2005), Honorable Worker of Higher Professional Education of the Russian Federation (2006). The author of more than 150 scientific publications. Area of expertise: digital signal processing; radar theory; microwave remote sensing; air traffic control.
67A Bolshaja Morskaja St., St Petersburg 190121
References
1. Moreira A., Prats-Iraola P., Younis M., Krieger G., Hajnsek I., Papathanassiou K. P. A tutorial on synthetic aperture radar, IEEE Geoscience and Remote Sensing Magazine. Mar. 2013, vol. 1, iss. 1, pp. 6–43. doi: 10.1109/MGRS.2013.2248301
2. Uysal F. Comparison of range migration correction algorithms for range-Doppler processing. J. Appl. Remote Sens. 2017, vol. 11, iss. 3, art. 036023, pp. 1−10. doi: 10.1117/1.JRS.11.036023
3. Cumming I., Bennett J. Digital processing of Seasat SAR data. Proc. Article in ICASSP ’79. IEEE Intern. Conf. on Acoustics, Speech and Signal Proc. Apr. 1979, vol. 4, pp. 710–718. doi: 10.1109/icassp.1979.1170630
4. Jin M. Y., Wu C. A SAR correlation algorithm which accommodates large range migration. IEEE Transactions on Geoscience and Remote Sensing. Nov. 1984, vol. GE–22, iss. 6, pp. 592–597. doi: 10.1109/tgrs.1984.6499176
5. Chang C. Y., Jin M., Curlander J. C. Squint Mode SAR Processing Algorithms in 12th Canadian Symp. on Remote Sensing Geoscience and Remote Sensing Symp. Jul. 1989, vol. 3, pp. 1702–1706. doi: 10.1109/igarss.1989.576456
6. Smith A. M. A new approach to range–Doppler SAR processing. Intern. J. of Remote Sensing. Feb. 1991, vol. 12, iss. 2, pp. 235–251. doi: 10.1080/01431169108929650
7. Franceschetti G., Schirinzi G., A SAR processor based on two–dimensional FFT code. IEEE Transactions on Aerospace Electronic Systems. Mar. 1990, vol. 26, iss. 2, pp. 356–366. doi: 10.1109/7.53462
8. Cafforio C., Prati C., Rocca F. SAR data focusing using seismic migration techniques. IEEE Transactions on Aerospace and Electronic Systems. Mar. 1991, vol. 27, iss. 2, no. 2, pp. 194–207. doi: 10.1109/7.78293
9. Franceschetti G., Lanari R., Marzouk E. S. Aberration free SAR raw data processing via transformed grid predeformation. Proc. of IGARSS ’93 – IEEE Intern. Geoscience and Remote Sensing Symp. Aug. 1993, vol. 4, pp. 1593-1595. doi: 10.1109/igarss.1993.322306
10. Stolt R. H. Migration by Fourier transform. Geophysics. Feb. 1978, vol. 43, iss. 1, pp. 23–48. doi: 10.1190/1.1440826
11. Perry R. P., DiPietro R. C., Fante R. L. SAR imaging of moving targets. IEEE Transactions on Aerospace Electronic Systems. Jan. 1999, vol. 35, iss. 1, pp. 188–200. doi:10.1109/7.745691
12. Perry R. P., DiPietro R. C., Fante R. L. Coherent Integration with Range Migration Using Keystone Formatting. 2007 IEEE Radar Conf. Apr. 2007, pp. 863–868. doi: 10.1109/radar.2007.374333
13. Runge H., Bamler R. A Novel High Precision SAR Focussing Algorithm Based on Chirp Scaling. Proc. Article IGARSS ’92 Intern. Geoscience and Remote Sensing Symp. May 1992, vol. 1, pp. 372–375. doi: 10.1109/igarss.1992.576715
14. Cumming I., Wong F., Raney K. A SAR Processing Algorithm with no Interpolation. Proc. IGARSS ’92 Intern. Geoscience and Remote Sensing Symp. May 1992, vol. 1, pp. 376–379. doi: 10.1109/igarss.1992.576716
15. Wong F., Cumming I., Raney R. K. Processing simulated RADARSAT SAR data with squint by a high precision algorithm. Proc. of IGARSS ’93. IEEE Intern. Geoscience and Remote Sensing Symp. Aug. 1993, vol. 3, pp. 1176–1178. doi: 10.1109/igarss.1993.322127
16. Raney R. K., Runge H., Bamler R., Cumming I. G., Wong F. H. Precision SAR processing using chirp scaling. IEEE Transactions on Geoscience and Remote Sensing. Jul. 1994, vol. 32, iss. 4, pp. 786–799. doi: 10.1109/36.298008
17. Moreira A., Huang Y. Airbome SAR Processing of Highly Squinted Data Using a Chirp Scaling Approach with Integrated Motion Compensation. IEEE Trans. Geoscience and Remote Sensing. 1994, vol. 32, iss. 5, pp. 1029–1040. doi: 10.1109/36.312891
18. Moreira A., Mittermayer J., Scheiber R. Extended chirp scaling algorithm for air- and spaceborne SAR data processing in stripmap and scanSAR imaging modes. IEEE Transactions on Geoscience and Remote Sensing. J. Article. 1996, vol. 34, iss. 5, pp. 1123–1136. doi: 10.1109/36.536528
19. Mittermayer J., Moreira A., Loffeld O. Spotlight SAR data processing using the frequency scaling algorithm. IEEE Transactions on Geoscience and Remote Sensing. Sep. 1999, vol. 37, iss. 5, pp. 2198–2214. doi: 10.1109/36.789617
20. Zhu D., Shen M., Zhu Z. Some Aspects of Improving the Frequency Scaling Algorithm for Dechirped SAR Data Processing. IEEE Transactions on Geoscience and Remote Sensing. 2008, vol. 46, iss. 6, pp. 1579-1588. doi: 10.1109/tgrs.2008.916468
21. Zhou F., Wu R., Xing M., Bao Z. Approach for single channel SAR ground moving target imaging and motion parameter estimation. IET Radar, Sonar&, Navigation. 2007, vol. 1, no. 1, pp. 59−66. doi: 10.1049/iet-rsn:20060040
22. Scott K. M., Barott W. C., Himed B. The keystone transform: Practical limits and extension to second order corrections. IEEE Radar Conf. (RadarCon), Arlington, VA. 2015, pp. 1264−1269. doi: 10.1109/RADAR.2015.7131189
23. Zhu D., Li Y., Zhu Z. A Keystone Transform without Interpolation for SAR Ground Moving Target Imaging. IEEE Geoscience and Remote Sensing Lett. 2007, vol. 4, iss. 1, pp. 18–22. doi: 10.1109/lgrs.2006.882147
24. Papoulis A. The Fourier integral and its applications. New York, McGraw–Hill, 1962.
25. Monakov A. An algorithm of range migration compensation for sidelooking SAR. Electromagnetic waves and electronic systems. 2018, vol. 23, no. 7, pp. 6−12. doi: 10.18127/j15604128-201807-02 (In Russ.)
26. Fedoryuk M. V. Asymptotic: Integrals and Series. Moscow, Nauka, 1987, 366 p. (In Russ.)
27. Vladimirov V. S. Generalized functions in mathematical physics. Moscow, Nauka, 1979, 320 p. (In Russ.)
28. Barbarossa S., Farina A. Detection and imaging of moving objects with synthetic aperture radar. Pt. 2. Joint time-frequency analysis by Wigner Ville distribution. IEE Proceedings F (Radar and Signal Processing). 1992, vol. 139, no. 1, pp. 89−97. doi: 10.1049/ip-f-2.1992.0011
29. Barbarossa S. Analysis of multicomponent LFM signals by a combined Wigner-Hough transform. IEEE Transactions on Signal Processing. 1995, vol. 43, no. 6, pp. 1511−1515. doi: 10.1109/78.388866
30. Hong-Bo Sun, Guo-Sui Liu, Hong Gu, Wei-Min Su Application of the fractional Fourier transform to moving target detection in airborne SAR, IEEE Transactions on Aerospace and Electronic Systems. 2002, vol. 38, no. 4, pp. 1416−1424. doi: 10.1109/TAES.2002.1145767
31. Yu X., Chen X., Huang Y., Guan J. Sparse Fractional Fourier Transform and its Applications in Radar Moving Target Detection, Intern. Conf. on Radar (RADAR), Bris-bane, QLD. 2018, pp. 1−5. doi: 10.1109/RADAR.2018.8557319
32. Sharif M. R., Abeysekera S. S. Efficient wideband signal parameter estimation using a Radon-ambiguity transform slice, IEEE Transactions on Aerospace and Electronic Systems. 2007, vol. 43, no. 2, pp. 673−688. doi: 10.1109/TAES.2007.4285361
33. Yang J., Zhang Y. A novel keystone transform based algorithm for moving target imaging with Radon transform and fractional Fourier transform involved, Progress in Electromagnetics Research Symposium. 2014, pp. 1406−1410.
Review
For citations:
Monakov A.A. A Simple Algorithm for Compensation for Range Cell Migration in a Stripmap SAR. Journal of the Russian Universities. Radioelectronics. 2021;24(2):27-37. https://doi.org/10.32603/1993-8985-2021-24-2-27-37