A Versatile Algorithm for Autofocusing SAR Images
https://doi.org/10.32603/1993-8985-2021-24-1-22-33
Abstract
Introduction. Random deviations of the antenna phase centre of a synthetic aperture radar (SAR) are a source of phase errors for the received signal. These phase errors frequently cause blurring of the radar image. The image quality can be improved using various autofocus algorithms. Such algorithms estimate phase errors via optimization of an objective function, which defines the radar image quality. The image entropy and sharpness are well known examples of objective functions. The objective function extremum can be found by fast optimization methods, whose realization is a challenging computing task.
Aim. To synthesize a versatile and computationally simple autofocusing algorithm allowing any objective function to used without changing its structure significantly.
Materials and methods. An algorithm based on substituting the selected objective function with a simpler surrogate objective function, whose extremum can be found by a direct method, is proposed. This method has been referred as the MM optimization in scientific literature. It is proposed to use a quadratic function as a surrogate objective function.
Results. The synthesized algorithm is straightforward, not requiring recursive methods for finding the optimal solution. These advantages determine the enhanced speed and stability of the proposed algorithm. Adjusting the algorithm for the selected objective function requires minimal software changes. Compared to the algorithm using a linear surrogate objective function, the proposed algorithm provides a 1.5 times decrease in the standard deviation of the phase error estimate, with an approximately 10 % decrease in the number of iterations.
Conclusion. The proposed autofocusing algorithm can be used in synthetic aperture radars to compensate the arising phase errors. The algorithm is based on the MM-optimization of the quadratic surrogate objective functions for radar images. The computer simulation results confirm the efficiency of the proposed algorithm even in case of large phase errors.
About the Author
A. A. MonakovRussian Federation
Andrey A. Monakov, Dr. Sci. (Eng.) (2000), Professor (2005) of the Department of radio equipment systems, Honorable Mechanical Engineer of the Russian Federation (2005), Honorable Worker of Higher Professional Education of the Russian Federation (2006)
67A Bolshaja Morskaja St., St Petersburg 190121
References
1. Cumming I. G., Wong F. H. Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation. Boston, MA, USA: Artech House, 2005.
2. Xi L., Guosui L., Ni J. Autofocusing of ISAR images based on entropy minimization // IEEE Trans. on Aerospace and Electronic Systems. Oct. 1999. Vol. AES-35, № 4. P. 1240-1252. doi: 10.1109/7.805442
3. Wang J., Liu X. SAR minimum-entropy autofocus using an adaptive-order polynomial model // IEEE Trans. on Geoscience and Remote Sensing Lett. Oct. 2006. Vol. 3, № 4. P. 512-516. doi: 10.1109/lgrs.2006.878446
4. Zeng T., Wang R., Li F. SAR image autofocus utilizing minimum-entropy criterion // IEEE Trans. on Geoscience and Remote Sensing Lett. 2013. Vol. 10, № 6. P. 1552-1556. doi: 10.1109/lgrs.2013.2261975
5. Berizzi F., Corsini G. Autofocusing of inverse synthetic aperture radar images using contrast optimization // IEEE Trans. on Aerospace and Electronic Systems. 1996. Vol. AES-32, № 3. P. 1185-1191. doi: 10.1109/7.532282
6. Fortune S. A., Hayes M. P., Gough P. T. Contrast optimization of coherent images // Oceans, Celebrating the Past... Teaming Toward the Future (IEEE Cat. № 03CH37492), San Diego, CA, USA. 2003. Vol. 5. P. 2622-2628. doi: 10.1109/oceans.2003.1282986
7. A contrast-based algorithm for synthetic rangeprofile motion compensation / F. Berizzi, M. Martorella, A. Cacciamano, A. Capria // IEEE Trans. on Geoscience and Remote Sensing. 2008. Vol. GRS-46, № 10. P. 3053-3062. doi: 10.1109/tgrs.2008.2002576
8. Fienup J. R. Synthetic-aperture radar autofocus by maximizing sharpness // Optics Lett. 2000. Vol. 25, № 4. P. 221-223. doi: 10.1364/ol.25.000221
9. Fienup J. R., Miller J. J. Aberration correction by maximizing generalized sharpness metrics // J. of the Optical Society of America. 2003. Vol. 20, № 4. P. 609-620. doi: 10.1364/josaa.20.000609
10. Morrison R. L., Do M. N., Munson D. C. SAR Image Autofocus by Sharpness Optimization: A Theoretical Study // IEEE Trans. on Image Processing. 2007. Vol. 16, iss. 9. P. 2309-2321. doi: 10.1109/tip.2007.903252
11. Sharpness-based autofocusing for stripmap SAR using an adaptive-order polynomial model / Y. Gao, W. Yu, Y. Liu, R. Wang, C. Shi // IEEE Trans. on Geoscience and Remote Sensing Lett. 2014. Vol. 11, № 6. P. 1086-1090. doi: 10.1109/lgrs.2013.2286410
12. Gao Y., Yu W., Liu Y., Wang R. Autofocus algorithm for SAR imagery based on sharpness optimization // Electronics Lett. 2014. Vol. 50, № 11. P. 830-832. doi: 10.1049/el.2013.4111
13. Monakov A. A. Autofocusing of radar images by sharpness maximization. XXIV Intern. scientific conf. “Radiolocation, Navigation and Communication". Apr. 2018, Voronezh, vol. 3, pp. 321-334. (In Russ.)
14. Schulz T. J. Optimal Sharpness Function for SAR Autofocus // IEEE Signal Processing Lett. 2007. Vol. 14, № 1. P. 27-30. doi: 10.1109/lsp.2006.881525
15. Lange K., Hunter D. R., Yang I. Optimization transfer using surrogate objective functions // J. of Computational and Graphical Statistics. 2000. Vol. 9, № 1. P. 1-20. doi: 10.2307/1390605
16. Hunter D. R., Lange K. A Tutorial on MM algorithms // The American Statistician. 2004. Vol. 58, № 1. P. 30-37. doi: 10.1198/0003130042836
17. De Leeuw J., Lange K. Sharp quadratic majorization in one dimension // Computational Statistics and Data Analysis. 2009. Vol. 53, № 7. P. 2471-2484. doi: 10.1016/j.csda.2009.01.002
18. Kragh T. J. Monotonic iterative algorithm for minimum-entropy autofocus // In Proc. of the Adaptive Sensor Array Processing (ASAP) Workshop, 2006, Lexington, MA, USA, 6–7 June 2006.
19. Precision SAR processing using chirp scaling / R. K. Raney, H. Runge, R. Bamler, I. G. Cumming, F. H. Wong // IEEE Trans. on Geoscience and Remote Sensing. 1994. Vol. 32, iss. 4. P. 786-799. doi: 10.1109/36.298008
20. Moreira A., Huang Y. Airborne SAR Processing of highly squinted data using a chirp scaling algorithm with integrated motion compensation // IEEE Trans. on Geoscience and Remote Sensing. 1994. Vol. 32, № 5. P. 1029-1040. doi: 10.1109/36.312891
21. Cafforio C., Pratti C., Rocca F. SAR Data Focusing Using Seismic Migration Techniques // IEEE Trans. on Aerospace and Electronic Systems. 1991. Vol. AES-27, № 2. P. 194-207. doi: 10.1109/7.78293
22. Gill P. E., Murray W., Wright M. H. Practical optimization. London, New York, Academic Press, 1981. (In Russ.)
Review
For citations:
Monakov A.A. A Versatile Algorithm for Autofocusing SAR Images. Journal of the Russian Universities. Radioelectronics. 2021;24(1):22-33. (In Russ.) https://doi.org/10.32603/1993-8985-2021-24-1-22-33