Preview

Journal of the Russian Universities. Radioelectronics

Advanced search

Magnetometry, Acoustical and Inertial Indoor-Positioning in Healthcare

https://doi.org/10.32603/1993-8985-2020-23-5-7-23

Abstract

Introduction. The problem of localization of moving objects inside buildings becomes more urgent in healthcare. Tracking the movements of patients in real time allows one to provide them with timely medical support in case of sharp deterioration in their vital signs. It is especially important to track the location of patients undergoing a surgery, since the risk of death due to postoperative complications for them is extremely high. Using indoor-positioning technologies in telemedicine systems can solve the problem, thereby reducing the mortality rate of patients and improving the quality of medical care.

Aim. To study the applicability of magnetometry, inertial and acoustic technologies for patient’s localization in a hospital.

Materials and methods. The analysis of domestic and foreign scientific sources devoted to indoor-positioning based on the above technologies was carried out. Material published not earlier than 2016, was chosen for the analysis. Most of the papers were published in journals with impact-factor not lower than 3.

Results. After analyzing the information received, it was concluded that none of the technologies can be used independently. Inertial sensors possess high accuracy, but over time, the measurement error increases. There-fore, the sensors need to regular correction. Indoor-positioning based on geomagnetism is hampered by interference that can be induced by the operation of magnetic resonance imaging scanners and X-ray equipment, which are usually used in medical facilities. Active magnetometry does not allow to keep track of moving objects due to specific of hardware used. Ultrasound-based positioning can be complicated by ultrasonography apparatuses interference. Using an audible sound creates noise pollution and exerts a negative impact on patient’s health. Also, acoustic technologies are unable to provide a secure communication channel for data exchange.

Conclusion. It is recommended to combine the reviewed positioning technologies with other technologies in order to correct the indicated disadvantages.

About the Authors

I. V. Cherepanova
Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation
Irina V. Cherepanova, Engineer of Electronic systems (2012, Tomsk state university of control systems and radioelectronics), Junior Researcher Scientist of the Laboratory of registries of cardiovascular diseases, high-tech interventions and telemedicine, 111a Kievskaya St., Tomsk 634012, Russia


I. V. Pospelova
Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation
Irina V. Pospelova, Engineer of Computer Software and Automated Systems (2016, National Research Tomsk Polytecnic University), Junior Researcher Scientist of the Laboratory of registries of cardiovascular diseases, high-tech interventions and telemedicine, 111a Kievskaya St., Tomsk 634012, Russia


D. S. Bragin
Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation
Dmitriy S. Bragin, Engineer of Radio, broadcasting and Television (2005, Tomsk state university of control systems and radioelectronics). Junior Researcher Scientist of the Laboratory of registries of cardiovascular diseases, high-tech interventions and telemedicine, 111a Kievskaya St., Tomsk 634012, Russia


V. N. Serebryakova
Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences
Russian Federation
Victoria N. Serebryakova, PhD (2010), Head of the Laboratory of registries of cardiovascular diseases, high-tech interventions and telemedicine, Cardiology Research Institute, Tomsk National Research Medical Center, Rus-sian Academy of Sciences, 111a Kievskaya St., Tomsk 634012, Russia


References

1. Smol'kov M. S., Sukhobok Yu. A. Analysis of current technologies of construction indoor navigation systems. Nauchno-tehnicheskoe i jekonomicheskoe sotrudnichestvo stran ATR v XXI veke, 2019, vol. 2, pp. 88–92. (In Russ.)

2. Brena R. F., García-Vázquez J. P., Galván-Tejada C. E., Muñoz-Rodriguez D., Vargas-Rosales C., Fangmeyer J. Evolution of Indoor Positioning Technologies: A Survey. J. of Sensors. 2017, vol. 6, pp. 1–21. doi: 10.1155/2017/2630413

3. Davidson P., Piché R. A survey of selected indoor positioning methods for smartphones. IEEE Communications Surveys & Tutorials, 2016, vol. 19, no 2, pp. 1347–1370. doi: 10.1109/COMST.2016.2637663

4. Guo X., Ansari N., Fangzi Hu, Shao Y., Elikplim N. R., Li L. A Survey on Fusion-based Indoor Positioning. IEEE Communications Surveys & Tutorials. 2019, vol. 22, iss. 1, pp. 566–594. doi: 10.1109/comst.2019.2951036

5. Kasatkina T. I., Chepelev M. Ju., Golev I. M. Analiz sushhestvujushhih tehnologij navigacii vnutri pomeshhenija. Aktual'nye problemy dejatel'nosti podrazdelenij UIS: Sb. Materialov Vseros. nauth.-prakt. konf. Voronez: IPC "Nauthnaj kniga". 2018, pp. 211–213. (In Russ.)

6. Vakhrusheva A. A. Positioning technologies in real time. Vestnik SGUGiT (Sibirskogo gosudarstvennogo universiteta geosistem i tehnologij), 2017, vol. 22, no. 1, pp. 170–177. (In Russ.)

7. RealTrac Technologies. Scalable indoor positioning and communication system for medical centers, hospitals and clinics. Available at: https://real-trac.com/en/solutions/medicine/ (accessed 28.08.2020)

8. Situm Indoor Positioning. Indoor Location for cosier, safer and more connected hospitals. Available at: https://situm.com/en/solutions/indoor-navigation-and-employee-indoor-tracking-for-hospitals/ (accessed 28.08.2020)

9. InfSoft Smart Connaction Locations. Solutions for Real-Time Locating Systems. Available at: https://www.infsoft.com/use-cases/indoor-tracking-of-patients-in-hospitals (accessed 28.08.2020)

10. Navigine. Healthcare. Available at: https://navigine.com/industries/healthcare/ (accessed 28.08.2020)

11. Indoo.rs. Healthcare. Available at: https://indoo.rs/industries/healthcare/ (accessed 28.08.2020)

12. Pospelova I. V., Bragin D. S., Cherepanova I. V., Serebryakova V. N. Optical technologies of local positioning in healthcare (an analytic review). Program Systems: Theory and Applications, 2020, vol. 11, no. 3 (46), pp. 133–151. doi: 10.25209/2079-3316-2020-11-3-133-151

13. Bragin D. S., Pospelova I. V., Cherepanova I. V., Serebryakova V. N. Radiofrequency Technologies of Local Positioning in Healthcare. J. of the Russioan Universitets. Radioelectronics. 2020, vol. 23, no. 3, pp. 62–79. doi: 10.32603/1993-8985-2020-23-3-62-79

14. Osipov M. P., Andreev V. S. The problem of monitoring of movement in the task of navigation in enclosed spaces. Informatsionnye tekhnologii i nanotekhnologii, 2018, pp. 2505–2511. (In Russ.)

15. Morozov A. L., Klimashin M. V., Safin B. G. Indoor-navigation based on inertial navigation system. Novye tekhnologii, materialy i oborudovanie rossiiskoi aviakosmicheskoi otrasli-AKTO-2016, 2016, vol. 2, pp. 608–612. (In Russ.)

16. Ramezani M., Acharya D., Gu F., Khoshelham K. Indoor positioning by visual-inertial odometry. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2017, vol. IV-2/W4, pp. 371–376. doi: 10.5194/isprs-annals-IV-2-W4-371-2017

17. Ilkovičová Ľ., Kajánek P., Kopacik A. Pedestrian Indoor Positioning and Tracking using Smartphone Sensors Step Detection and Map Matching Algorithm // Intern. Symp. on Engineering Geodesy, May 2016, Varazdin, Croatia, pp. 1–24.

18. Januszkiewicz L., Kawecki J., Kawecki R., Oleksy P. Wireless Indoor Positioning System with Inertial Sensors and Infrared Beacons. 10th Europ. Conf. on Antennas and Propagation (EuCAP). Davos, Switzerland, Apr 2016. Piscataway: IEEE, 2016. P. 1–3. doi: 10.1109/eucap.2016.7481650

19. Ji Y. Q., Xiao Ch. X., Gao J., Ni J. M., Cheng H., Zhang P. Ch., Sun G. A Single LED Lamp Positioning System Based on Cmos Camera and Visible Light Communication. Optics Communications, 2019, vol. 443, pp. 48–54. doi: 10.1016/j.optcom.2019.03.002

20. Li Zh., Yang A., Lv H., Feng L., Song W. Fusion of visible light indoor positioning and inertial navigation based on particle filter. IEEE Photonics Journal, 2017, vol. 9, no. 5, pp. 1–13. doi: 10.1109/JPHOT.2017.2733556

21. Hou Y., Xiao Sh., Bi M., Xue Yu., Pan W., Hu W. Single LED beacon-based 3-D Indoor Positioning using Off-the-shelf Devices. IEEE Photonics Journal, 2016, vol. 8, no. 6, pp. 1-11. doi: 10.1109/JPHOT.2016.2636021

22. Koshelev B. V., Karagin N. A. O vozmozhnosti ispol'zovanija smartfonov dlja navigacii vnutri pomeshhenij. Izvestija Tul'skogo gosudarstvennogo universiteta. Tehnicheskie nauki, 2017, no. 9–2, pp. 131–140. (In Russ.)

23. Han C., Zhongtao W., Longxu W. Indoor Positioning System Based on Zigbee and Inertial System. 2018 5th Int. Conf. on Dependable Systems and Their Applications (DSA), Dalian, China, 22–23 Sept. 2018. Piscataway: IEEE, 2018. P. 80–85. doi: 10.1109/dsa.2018.00023

24. Fu W., Peng A., Tang B., Zheng L. Inertial sensor aided visual indoor positioning. 2018 Int. Conf. on Electronics Technology (ICET), Chengdu, China, 23–27 May 2018. Piscataway: IEEE, 2018. P. 106–110. doi: 10.1109/el-tech.2018.8401435

25. Yilmaz A., Gupta A. Indoor positioning using visual and inertial sensors. 2016 IEEE Sensors. Orlando, USA, 30 Oct.–3 Nov. 2016. Piscataway: IEEE, 2016, pp. 1–3. doi: 10.1109/ICSENS.2016.7808526

26. Wu C., Mu Q., Zhang Zh., Jin Yu., Wang Zh., Shi G. Indoor positioning system based on inertial MEMS sensors: Design and realization. 2016 IEEE Intern. Conf. on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER). Chengdu, China, 19–22 June 2016. Piscataway: IEEE, 2016, pp. 370–375. doi: 10.1109/CYBER.2016.7574852

27. Chuikov P. B. Determination of the position of the object with the use of the magnetic-inertial method. Tekhnika XXI veka glazami molodykh uchenykh i spetsialistov, 2018, no. 17, pp. 160–166. (In Russ.)

28. Rempel' P. V., Borisov A. P. Razrabotka sistemy pozicionirovanija na osnove besprovodnoj seti WiFi. Jelektronnye sredstva i sistemy upravlenija. Materialy dokladov Mezhdunarodnoj nauchno-prakticheskoj konferencii, Tomsk: Tomskij GU system upravlenij I radioelektroniki, 2018, no. 1–2, pp. 41–43. (In Russ.)

29. Kasatkina T. I., Voitsekhovskii M. A., Golev I. M. O perspektivakh ispol'zovaniya sistem magnitnogo pozitsionirovaniya na ob’ektakh FSIN Rossii. Aktual'nye problemy deyatel'nosti podrazdelenii UIS: sbornik materialov Vserossiiskoi nauchno-prakticheskoi konferentsii, Voronez, 25 okt. 2018, Voronez: IPC "Nauthnaj kniga", 2018, pp. 204–207. (In Russ.)

30. Yeh Sh.-Ch., Hsu W.-H., Lin W.-Y., Wu Y.-F. Study on an Indoor Positioning System Using Earth's Magnetic Field. IEEE Trans. on Instrumentation and Measurement. 2020, vol. 69, iss. 3, pp. 865–872. doi: 10.1109/tim.2019.2905750

31. Bai Y. B., Gu T., Hu A. Integrating Wi-Fi and magnetic field for fingerprinting based indoor positioning system. 2016 Intern. Conf. on Indoor Positioning and Indoor Navigation (IPIN). Alcala de Henares, Spain, 4–7 Oct. 2016. Piscataway: IEEE. 2016, pp. 1–6. doi: 10.1109/ipin.2016.7743699

32. Binu P. K., Krishnan R. A., Kumar A. P. An efficient indoor location tracking and navigation system using simple magnetic map matching. 2016 IEEE Intern. Conf. on Computational Intelligence and Computing Research (ICCIC). Chennai, India, 15–17 Dec. 2016. Piscataway: IEEE, 2016, pp. 1-7. doi: 10.1109/iccic.2016.7919537

33. Bimal B., Hwang S., Pyun J. An Efficient Geomagnetic Indoor Positioning System Using Smartphones. The 3rd Intern. Conf. on Next Generation Computing (IC-NGC2017b), 2018, pp. 3–6.

34. De Angelis G., Pasku V., De Angelis A., Dionigi M., Mongiardo M., Moschitta A., Carbone P. An Indoor AC Magnetic Positioning System. IEEE Trans. on Instrumentation and Measurement. 2014, vol. 64, iss. 5, pp. 1267–1275. doi: 10.1109/tim.2014.2381353

35. Blankenbach J., Norrdine A., Hellmers H. Adaptive Signal Processing for a Magnetic Indoor Positioning System. Proc. of the 2011 Intern. Conf. on Indoor Positioning and Indoor Navigation (IPIN). Guimarães, Portugal, 21–23 Sept. 2011. Available at: http://ipin2011.dsi.uminho.pt/PDFs/Shortpaper/66_Short_Paper.pdf (accessed 05.11.2020)

36. Wu F., Liang Yu., Fu Yo., Ji X. A Robust Indoor Positioning System based on Encoded Magnetic Field and Low-Cost IMU. 2016 IEEE/ION Position, Location and Navigation Symp. (PLANS). Savannah, USA, Apr 2016. Piscataway: IEEE, 2016, pp. 204–212. doi: 10.1109/plans.2016.7479703

37. Hellmers H., Norrdine A., Blankenbach J., Eichhorn A. An IMU/magnetometer-based Indoor Positioning System using Kalman Filtering. Intern. Conf. on Indoor Positioning and Indoor Navigation. Montbeliard-Belfort, France, 28–31 Oct. 2013. Piscataway: IEEE, 2013, pp. 1–9. doi: 10.1109/ipin.2013.6817887

38. Hellmers H., Kasmi Z., Norrdine A., Eichhorn A. Accurate 3D Positioning for a Mobile Platform in Non-line-of-sight Scenarios Based on IMU/magnetometer Sensor Fusion. Sen-sors. 2018, vol. 18, iss. 1, 126 p. doi: 10.3390/s18010126

39. Carter D. J., Silva B. J., Qureshi U. M., Hancke G. P. An Ultrasonic Indoor Positioning System for Harsh Environments. IECON 2018 44th Annual Conf. of the IEEE Industrial Electronics Society. Washington, Oct. 2018. Piscataway: IEEE, 2018, pp. 5215–5220. doi: 10.1109/iecon.2018.8591161

40. Osaki Sh., Naito K. Proposal of Indoor Positioning Scheme Using Ultrasonic Signal by Smartphone. Innovation in Medicine and Healthcare Systems, and Multimedia. Smart Innovation, Systems and Technologies: Proc. of KES-InMed-19 and KES-IIMSS-19 Conf. Springer, Singapore. 2019, pp. 583–592. doi: 10.1007/978-981-13-8566-7_53

41. Burtsev A. G., Zhangabulov T. A. Sravnenie razlichnykh chislennykh metodov dlya resheniya zadachi ul'trazvukovogo pozitsionirovaniya podvizhnogo robota v zakrytom prostranstve. Inzhenernyi vestnik Dona, 2016, vol. 41, no. 2 (41). (In Russ.)

42. Li J., Han G., Zhu Ch., Sun G. An Indoor Ultrasonic Positioning System based on TOA for Internet of Things. Mobile Information Systems, vol. 2016, art. ID 4502867, 10 p. doi: 10.1155/2016/4502867

43. Aguilera T., Seco F., Álvarez F. J., Jiménez A. Broadband Acoustic Local Positioning System for Mobile Devices with Multiple Access Interference Cancellation. Measurement. 2018, vol. 116, pp. 483–494. doi: 10.1016/j.measurement.2017.11.046

44. Diaz E., Perez M. C., Gualda D., Villadangos J. M., Urena J., Garcia J. J. Ultrasonic Indoor Positioning for Smart Environments: A Mobile Application. 2017 4th Experiment@Intern. Conf. (exp. at'17). Faro, Portugal, Jun 2017. Piscataway: IEEE, 2017, pp. 280–285. doi: 10.1109/expat.2017.7984382

45. Mier J., Jaramillo-Alcázar A., Freire J. J. At a Glance: Indoor Positioning Systems Technologies and their Applications Areas. Intern. Conf. on Information Technology &Systems. Springer, Cham, 2019, pp. 483–493. doi: 10.1007/978-3-030-11890-7_47

46. Qi J., Liu G. P. A robust High-Accuracy Ultrasound Indoor Positioning System based on a Wireless Sensor Network. Sensors. 2017, vol. 17, iss. 11, pp. 2554. doi: 10.3390/s17112554

47. Latvala S., Sethi M., Aura T. Evaluation of Out-of-band Channels for IoT Security. SN Computer Science. 2020, vol. 1, no. 1, art. 18. doi: 10.1007/s42979-019-0018-8


Review

For citations:


Cherepanova I.V., Pospelova I.V., Bragin D.S., Serebryakova V.N. Magnetometry, Acoustical and Inertial Indoor-Positioning in Healthcare. Journal of the Russian Universities. Radioelectronics. 2020;23(5):7-23. (In Russ.) https://doi.org/10.32603/1993-8985-2020-23-5-7-23

Views: 575


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1993-8985 (Print)
ISSN 2658-4794 (Online)