Preview

Journal of the Russian Universities. Radioelectronics

Advanced search

Comparison of Noise Reduction Algorithms for Optical Coherence Tomography Images of Skin Melanoma

https://doi.org/10.32603/1993-8985-2020-23-4-66-76

Abstract

Introduction. Optical coherence tomography (ОКТ) is a non-invasive instrument for studying optically heterogeneous media with micron precision, including skin cancer. However, ОКТ tissue images are very noisy. It complicates both expert and automated image evaluations. There are almost no systematic comparisons of noise reduction algorithms in the literature.

Objective. To obtain comparative test results on a set of ОКТ images of skin melanoma using various noise reduction algorithms.

Materials and methods. A number of noise reduction algorithms were described, which include two relatively simple classical algorithms: Wiener and median, and more complex ones: a Complex Diffusion Filter (CDF), an Interval type-II Fuzzy Anisotropic Diffusion Filter (ITTFADF) and an Empirical Mode Decomposition (EMD) filter, previously proposed by the author for visualizing of mesh implants. Quantitative metrics were determined: a Signal-to-Noise Ratio (SNR) metrics, an Effective Number of Looks (ENL) metrics, Structural Similarity Index Metrics (SSIM) and a correlation coefficient χ, reflecting two main principles of improving image quality: to reduce noise and to save the borders of tissue layers and heterogeneities.

Results. The results of a comparative testing on a set of images, consisting of 10 melanomas (to which various noise reduction algorithms were applied) were obtained.

Conclusion. The study did not reveal the best algorithm for all four metrics. According to the SNR metric, the EMD and the CDF filters perform the best depending on the type of area. At the same time, the EMD filter is either the best in all respects, or is inferior in SNR in heterogeneous areas and takes the second place in ENL. Taking as the correct hypothesis that the border preservation is more important before an integral noise estimate, it is possible to make an unambiguous conclusion about the need to use the EMD filter. As an alternative to the EMD filter, Wiener filter (which wins on the border preservation metrics) should be used or the ITTFADF, which ranked third in all used metrics.

About the Author

O. O. Myakinin
Samara National Research University
Russian Federation
Oleg O. Myakinin, Master’s degree on Applied Mathematics and Computer Science (2011), Senior Lecturer of the Department Lasers and Biotechnical Systems, Researcher of the "Photonics" Laboratory, 34 Moskovskoe Ave., Samara 443086, Russia


References

1. Drexler W., Fujimoto J. G. State-of-the-art Retinal Optical Coherence Tomography. Progress in Retinal and Eye Research. 2008, vol. 27, no. 1, pp. 45-88. doi: 10.1016/j.preteyeres.2007.07.005

2. Wang J., Xu Y., Boppart S. A. Review of Optical Coherence Tomography in Oncology. J. of biomedical optics. 2017, vol. 22, no. 12, pp. 121711. doi: 10.1117/1.JBO.22.12.121711

3. Xiong Y.-Q., Mo Y., Wen Y.-Q., Cheng M.-J., Huo S.-T., Chen X.-J., Chen Q. Optical coherence tomography for the diagnosis of malignant skin tumors: a meta-analysis. Journal of biomedical optics, 2018, vol. 23, no. 2, pp. 020902. doi: 10.1117/1.JBO.23.2.020902

4. Frost V., Stiles J., Shanmugan K., Holtzman J. A model for radar images and its application to adaptive digital filtering of multiplicative noise. IEEE Transactions on pattern analysis and machine intelligence. 1982, vol. 2, pp. 157-166. doi: 10.1109/TPAMI.1982.4767223

5. Verhoeven J. T. M., Thijssen J. M. Improvement of lesion detectability by speckle reduction filtering: A quantitative study. Ultrasonic Imaging. 1993, vol. 15, no. 3, pp. 181-204. doi: 10.1006/uimg.1993.1012

6. Rogowska J., Brezinski M. E. Evaluation of the adaptive speckle suppression filter for coronary optical coherence tomography imaging. IEEE transactions on medical imaging. 2000, vol. 19, no. 12, pp. 1261-1266. doi: 10.1109/42.897820

7. Salinas H. M., Fernández D. C. Comparison of PDE-based nonlinear diffusion approaches for image enhancement and denoising in optical coherence tomography. IEEE Transactions on Medical Imaging. 2007, vol. 26, no. 6, pp. 761-771. doi: 10.1109/TMI.2006.887375

8. Puvanathasan P., Bizheva K. Interval type-II fuzzy anisotropic diffusion algorithm for speckle noise reduction in optical coherence tomography images. Optics express. 2009, vol. 17, no. 2, pp. 733-746. doi: 10.1364/OE.17.000733

9. Myakinin O. O., Kornilin D. V., Bratchenko I. A., Zakharov V. P., Khramov A. G. Noise reduction method for ОКТ images based on Empirical Mode Decomposition. Journal of Innovative Optical Health Sciences. 2013, vol. 6, no. 02, pp. 1350009. doi: 10.1142/S1793545813500090

10. Myakinin O. O. Biomedical data analysis systems for the diagnosis of skin malignancies. Izv. vuzov Rossii. Radioelektronika [Proceedings of Russian universities. Radio electronics]. 2020, vol. 23, no. 3, pp. 80–92. doi: 10.32603/1993-8985-2020-23-3-80-92 (In Russ.)

11. Baranov S. A. ОКТlab. C++ and LabView solution for Optical Coherence Tomography. Available at: https://code.google.com/archive/p/ОКТlab/ (accessed 18.06.2020)

12. Medfilt 2. 2-D median filtering. Math Works. URL: https://www.mathworks.com/help/images/ref/medfilt2.html (accessed 18.06.2020)

13. Wiener 2. 2-D Adaptive Noise-Removal Filtering. Math Works. URL: https://www.mathworks.com/help/images/ref/wiener2.html (accessed 18.06.2020)

14. Rodrigues P., Serranho P., Bernardes R. 3D nonlinear complex-diffusion filter on GPU. 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 2012, pp. 110-113. doi: 10.1109/EMBC.2012.6345883

15. Tizhoosh H. R. Image thresholding using type II fuzzy sets. Pattern recognition. 2005, vol. 38, no. 12. pp. 2363-2372. doi: 10.1016/j.patcog.2005.02.014

16. Ozcan A., Bilenca A., Desjardins A. E., Bouma B. E., Tearney G. J. Speckle reduction in optical coherence tomography images using digital filtering. Journal of the Optical Society of America A. 2007, vol. 24, no. 7, pp. 1901-1910. doi:10.1364/josaa.24.001901

17. Wang Z., Bovik A. C., Sheikh H. R., Simoncelli E. P. Image quality assessment: from error visibility to structural similarity. IEEE transactions on image processing. 2004, vol. 13, no. 4, pp. 600-612. doi: 10.1109/TIP.2003.819861

18. Song D., Liu Y., Lin X., Liu J., Tan J. Research and Comparison of ОКТ Image Speckle Denoising Algorithm. 2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference (ITAIC), 2019, pp. 1554-1558. doi: 10.1109/ITAIC.2019.8785813

19. Cennamo G., Romano M., Breve M., Velotti N., Reibaldi M., de Crecchio G., Cennamo G. Evaluation of choroidal tumors with optical coherence tomography: enhanced depth imaging and ОКТ-angiography features. Eye. 2017, vol. 31, pp. 906–915. doi: 10.1038/eye.2017.14

20. Dolganova I. N., Chernomyrdin N. V., Aleksandrova P. V., Beshplav S.-I. T., Potapov A. A., Reshetov I. V., Kurlov V. N., Tuchin V. V., Zaytsev K. I. Nanoparticle-enabled experimentally trained wavelet-domain denoising method for optical coherence tomography. Journal of biomedical optics. 2018, vol. 23, no. 9, art. 091406. doi: 10.1117/1.JBO.23.9.091406

21. Z. Jiang, Z. Huang, B. Qiu, X. Meng, Y. You, X. Liu, G. Liu, C. Zhou, K. Yang, A. Maier, Q. Ren, Y. Lu Comparative study of deep learning models for optical coherence tomography angiography. Biomed Opt Express. 2020, vol. 11, no. 3, pp. 1580–1597. doi: 10.1364/BOE.387807

22. Kirillin M., Meglinski I., Sergeeva E., Kuzmin V.L., Myllyla R. Simulation of optical coherence tomography images by Monte Carlo modeling based on polarization vector approach. Optics Express. 2010, vol. 18, no. 21, pp. 21714-21724. doi: 10.1364/OE.18.021714

23. Dolganova I. N., Neganova A. S., Kudrin K. G., Zaytsev K. I., Reshetov I. V. Monte Carlo simulation of optical coherence tomography signal of the skin nevus. Journal of Physics: Conference Series. 2016, vol. 673, pp. 012014. doi: 10.1088/1742-6596/673/1/012014


Review

For citations:


Myakinin O.O. Comparison of Noise Reduction Algorithms for Optical Coherence Tomography Images of Skin Melanoma. Journal of the Russian Universities. Radioelectronics. 2020;23(4):66-76. (In Russ.) https://doi.org/10.32603/1993-8985-2020-23-4-66-76

Views: 592


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1993-8985 (Print)
ISSN 2658-4794 (Online)