Preview

Journal of the Russian Universities. Radioelectronics

Advanced search

Investigation of the Characteristics of a Photodetector with a High Photocurrent when Transmitting Microwave Radio Signals Through an Optical Fiber

https://doi.org/10.32603/1993-8985-2020-23-4-48-56

Abstract

Introduction. At present, an optical transmission of a microwave signal is of great scientific and practical interest. Moreover, this transmission line can also be used to create microwave photonic devices. Microwave signal losses decrease with an increase of laser power. Commercial photodetectors withstand radiation with a power of several tens of milliwatts. Using a photodetector with a high photocurrent can improve characteristics of photonic transmission lines; in particular, it can reduce microwave signal losses.

Aim. Investigation of characteristics of a photodetector with a high photocurrent when transmitting microwave radio signals through optical fiber. Research of microwave signal losses as a function of optical power.

Materials and Methods. Experimental studies were carried out on created experimental schemes for studying the characteristics of the photodetector with modulated and unmodulated optical radiation. Theoretical studies were carried out by mathematical modeling of optical path transfer characteristics from the laser power at various powers of an input microwave signal.

Results. The dependencies of photocurrent and photovoltage of the photodetector versus laser power were obtained. The experimental amplitude-frequency characteristics of the photonic transmission line were measured at different optical powers. A frequency dependence of the photodetector sensitivity in the range of 0...12 GHz was obtained. Modeling of amplitude-frequency characteristics of the optical path in the range of 0...12 GHz was performed. An approximate frequency dependence of the photodetector sensitivity was obtained.

Conclusion. Due to the use of a photodetector with a high photocurrent value and with increasing laser power, microwave losses were reduced to about 10 dB. It was shown that for improving the transmission characteristics of an optical transmission line, it is necessary to use a broadband electro-optical modulator.

About the Authors

I. Yu. Tatsenko
Saint Petersburg Electrotechnical University
Russian Federation
Ivan Yu. Tatsenko, Master degree in electronics and nanoelectronics (2020), post graduate student of the De-partment of Physical Electronics and Technologies, 5, Professor Popov St., St Petersburg 197376, Russia


T. K. Legkova
Saint Petersburg Electrotechnical University
Russian Federation
Tat'yana K. Legkova, Bachelor's degree in electronics and nanoelectronics (2019), the 2st year master degree student, 5, Professor Popov St., St Petersburg 197376, Russia


A. V. Ivanov
POLYUS Research Institute of M. F. Stelmakh Joint Stock Company
Russian Federation
Andrey V. Ivanov, Head of Department, 3, Bld. 1, Vvedenskogo St., Moscow 117342, Russia


A. B. Ustinov
Saint Petersburg Electrotechnical University
Russian Federation
Alexey B. Ustinov, Dr. Sci. (Phys.-Math.) (2012), Associate Professor (2010) of the Department of Physical Electronics and Technologies, 5, Professor Popov St., St Petersburg 197376, Russia


References

1. Ackerman E., Betts G., Burns W., Campbell J., Сох С., Duan N., Prince, J., Regan М., Roussell М. H. Signal-to-noise performance of two analog photonic links using different noise reduction techniques. IEEE МТТ-S Int. Microwave Symp. Dig., Honolulu, Hawaii. 2007, pp. 51-54.

2. Belousov A. A., Vol'khin Yu. N., Gamilovskaya A. V., Dubrovskaya A. A., Tikhonov E. V. Ultra-wideband multifunctional microwave photonic receiving path for analog processing signals decimeter, centimeter and millimeter wavelengths. Microwave electronics and microelectronics conference. 2015, vol. 1, pp. 337-341. (In Russ.)

3. Petrov A. N., Tronev A. V., Lebedev V. V., Il'ichev I. V., Velichko E. N., Shamrai A. V. An Increase in the Transmission Efficiency of an RF Fiber-Optic Line Using the Working Point of an External Modulator Increasing the transmission ratio of microwave photonic path by controlling the operating point of an external modulator Technical Physics. 2015, vol. 85, no. 5, pp. 131-136. doi: 10.1134/S1063784215050217 (In Russ.)

4. Yao X. S., Maleki L. Optoelectronic microwave oscillator. Journal of the Optical Society of America B. 1996, vol. 13, no. 8, pp. 1725-1735. doi: 10.1364/JOSAB.13.001725

5. Belkin M. E., Loparev A. V., Semenova Y., Farrell G., Sigov A. S. Tunable RF-band optoelectronic oscillator and optoelectronic computer-added design model for its simulation. Microwave and Optical Technology Lett. 2011, vol. 53, no. 11, pp. 2474-2477. doi: 10.1002/mopp.26304

6. Zhu D., Pan S., Ben D. Tunable frequency-quadrupling dual-loop optoelectronic oscillator. IEEE Photonics Technology Lett. 2012, vol. 24, pp. 194-196, doi: 10.1109/LPT.2011.2176332.

7. Ustinov A. B., Nikitin A. A., Kalinikos B. A. Electronically tunable spin-wave optoelectronic microwave oscillator. Tech. Phys. 2015, vol. 60, no. 9, pp. 1392-1396. doi: 10.1134/S1063784215090224

8. Nikitin A. A., Kalinikos B. A. Theory of a tunable spin-wave optoelectronic microwave oscillator. Technical Physics. 2015, vol. 60, no. 9, pp. 1397-1401. doi: 10.1134/S1063784215090145

9. Ustinov A. B., Nikitin A. A., Kalinikos B. A. Magnetically Tunable Microwave Spin-Wave Photonic Oscillator. IEEE Magnetics Lett. 2015, vol. 6, pp. 1-4. doi: 10.1109/LMAG.2015.2487238

10. Ustinov A. B, Kondrashov A. V., Kalinikos B. A. A Microwave Photonic Generator of Chaotic and Noise Signals. Tech. Phys. Lett. 2016, vol. 42, no. 4, pp. 403–406. doi: 10.1134/S1063785016040283

11. Ustinov A. B, Kondrashov A. V., Kalinikos B. A. Dynamic modes of microwave signal autogeneration in a radio photonic ring generator. Technical Physics. 2017, vol. 62, no. 2, pp. 287-293. doi: 10.1134/S1063784217020153

12. Ustinov A. B., Kondrashov A. V., Nikitin A. A., Drozdovskii A. V., Kalinikos B. A. Self-Generation of Chaotic Microwave Signal in Spin Wave Optoelectronic Generator. Phys. Solid State. 2018, vol. 60, no. 11, pp. 2127–2131. doi: 10.1134/S106378341811032X

13. Ustinov A. B., Kondrashov A. V., Nikitin A. A., Lebedev V. V., Petrov A. N., Shamrai A. V., Kalinikos B. A. A Tunable spin wave photonic generator with improved phase noise characteristics. J. of Phys.: Conf. Oct. 2019, vol. 1326, art. 012015. doi: 10.1088/1742-6596/1326/1/012015

14. Lelievre O., Crozatier V., Berger P., Baili G., Llopis O., Dolfi D., Nouchi P., Goldfarb F., Bretenaker F., Morvan L., Pillet G. A model for designing ultralow noise single-and dual-loop 10-GHz optoelectronic oscillators. 2017, vol. 35, no. 20, pp. 4366-4374. doi: 10.1109/JLT.2017.2729018

15. Ly A., Auroux V., Khayatzadeh R., Gutierrez N., Fernandez A., Llopis, O. Highly spectrally pure 90-GHz signal synthesis using a coupled optoelectronic. IEEE Photonics Technology Lett. 2018, vol. 30, no. 14, pp. 1313–1316. doi: 10.1109/LPT.2018.2845747

16. Liu A., Yang Y., Song, R., Liu J., Dai J., Tian Z., Xu K. High-performance millimeter-wave synergetic optoelectronic oscillator with regenerative frequency-dividing oscillation. Optics express. 2019, vol. 27, no. 7, pp. 9848–9856. doi: 10.1364/OE.27.009848

17. Ghelfi P., Laghezza F., Scotti F., Serafino G., Capria A., Pinna S., Onori D., Porzi C., Scaffardi M., Malacarne A., Vercesi V., Lazzeri E., Berizzi F., Bogoni A. A fully photonics-based coherent radar system. Nature. 2014, vol. 507, iss. 7492, pp. 341–345. doi: 10.1038/nature13078

18. Onori D., Scotti F., Laghezza F., Bartocci M., Zaccaron A., Tafuto A., Albertoni A., Bogoni A., Ghelfi P. A photonically enabled compact 0.5–28.5 GHz RF scanning receiver. J. of Lightwave Technology. 2018, vol. 36, no. 10, pp. 1831-1839. doi: 10.1109/JLT.2018.2792304

19. Muniz A. L. M., Noque D. F., Borges R. M., Bogoni A., Hirano M., A. Cerqueira S. Jr. All-optical RF amplification toward Gpbs communications and millimeter-waves applications. Microwave and Optical Technology Lett. 2017, vol. 59, no. 9, pp. 2185-2189. doi: 10.1002/mopp.30704

20. Noque D. F., Borges R. M., Muniz A. L. M., Bogoni A., A. Cerqueira S. Jr. Thermal and dynamic range characterization of a photonics-based RF amplifier. Optics Communications. 2018, vol. 414, pp. 191-194. doi: 10.1016/j.optcom.2018.01.015

21. Xue W., Sales S., Capmany J., Mork J. Wideband 3600 microwave photonic phase shifter based on slow light in semiconductor optical amplifiers. Optics Express. 2010, vol. 18, pp. 6156–6163. doi: 10.1364/OE.18.006156

22. Sancho J., Lloret J., Gasulla I., Sales S., Capmany J. Fully tunable 3600 microwave photonic phase shifter based on a single semiconductor optical amplifier. Optics Express. 2011, vol. 19, iss. 18, pp. 17421-17426. doi: 10.1364/OE.19.017421

23. Xue W., Sales S., Mork J., Capmany J. Widely tunable microwave photonic notch filter based on slow and fast light effects. IEEE Photonics Technology Lett.. 2009, vol. 21, no. 3, pp. 167-169. doi: 10.1109/LPT.2008.2009468

24. Yan Y., Yao J. P. A tunable photonic microwave filter with a complex coefficient using an optical RF phase shifter. IEEE Photonics Technology Lett.. 2007, vol. 19, no. 19, pp. 1472-1474. doi: 10.1109/LPT.2007.903753

25. Yi X., Huang T. X. H., Minasian R. A. Tunable and reconfigurable photonic signal processor with programmable all-optical complex coefficients. IEEE Transactions on Microwave Theory and Techniques. 2010, vol. 58, no. 11, pp. 3088-3093. doi: 10.1109/TMTT.2010.2076931

26. Song M. H., Torres-Company V., Wu R., Hamidi E., Weiner A. M. Programmable multi-tap microwave photonic phase filtering via optical frequency comb shaping. Proc. Int. Topical Meet. Microw. Photon. Conf. Singapore, Oct. 18–21, 2011, pp. 37-40. doi: 10.1109/MWP.2011.6088663

27. Zeng F., Wang J., Yao J. P. All-optical microwave bandpass filter with negative coefficients based on a phase modulator and linearly chirped fiber Bragg gratings. Optics Lett. 2005, vol. 30, no. 17, 2203 p. doi: 10.1364/OL.30.002203

28. Wang J., Zeng F., Yao J. P. All-optical microwave bandpass filter with negative coefficients based on PM-IM conversion. IEEE Photonics Technology Lett. 2005, vol. 17, no. 10, pp. 2176-2178. doi: 10.1109/LPT.2005.852323

29. Mora J., Capmany J., Loayssa A., Pastor D. Novel technique for implementing incoherent microwave photonic filters with negative coefficients using phase modulation and single sideband selection. IEEE Photonics Technology Lett. 2006, vol. 18, no. 18, pp. 1943-1945. doi: 10.1109/LPT.2006.879950

30. Yao J. P., Wang Q. Photonic microwave bandpass filter with negative coefficients using a polarization modulator. IEEE Photonics Technology Lett. 2007, vol. 19, no. 9, pp. 644-646. doi: 10.1109/LPT.2007.894942


Review

For citations:


Tatsenko I.Yu., Legkova T.K., Ivanov A.V., Ustinov A.B. Investigation of the Characteristics of a Photodetector with a High Photocurrent when Transmitting Microwave Radio Signals Through an Optical Fiber. Journal of the Russian Universities. Radioelectronics. 2020;23(4):48-56. (In Russ.) https://doi.org/10.32603/1993-8985-2020-23-4-48-56

Views: 630


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1993-8985 (Print)
ISSN 2658-4794 (Online)