Preview

Известия высших учебных заведений России. Радиоэлектроника

Расширенный поиск

Plasma Enhanced Chemical Vapor Deposited Materials and Organic Semiconductors in Photovoltaic Devices

https://doi.org/10.32603/1993-8985-2020-23-4-38-47

Полный текст:

Аннотация

Introduction. PECVD enables fabrication of wide range of advanced materials with various structure such as amorphous, polymorphous, nano-crystalline, nanostructured, microcrystalline etc. and with various electronic properties. The latter can be also changed by different dopingl. PECVD silicon materials are commercially employed in multi-layered PV structures (including ones on flexible substrates). Combining these materials with crystalline silicon active substrate resulted in significant improvement of PCE in hetero junction technology PV structures. Existence of new organic semiconductors (OS) together with understanding of physical properties resulted in fast development of OC PV devices.

Aim. To consider both PECVD and OS materials and to present description of fabrication, structure and electronic properties for device application.

Materials and methods. Devices based on non-crystalline materials, devices based on OS, hybrid devices. PECVD and Spin coating technique was used to deposit materials with tunable properties enabling device engineering possibilities.

Results. PECVD and OS materials were analyzed. These materials have different levels of characterization (data volume, interpretation of the results etc.) and of understanding of physics determining device performance. Some examples of these materials in PV including structures with crystalline silicon were considered.

Conclusion. Important advantage of both PECVD and OS materials is that fabrication methods are compatible and allow fabrication of great variety of hybrid device structures on crystalline semiconductors. Advantages of such devices are difficult to predict because of lack of data in scientific literature. However a new area in material science and related devices for further exploring and exploiting has appeared.

Об авторах

А. Kosarev
National Institute for Astrophysics, Optics and Electronics (INAOE)
Мексика
Andrey Kosarev, Cand. Sci. (Eng.) in Physics and Mathematics in the specialty of "Semiconductors and Dielectrics" (1978), Professor Researcher at National Institute for Astrophysics, Optics and Electronics Dept., Puebla, 42840, Mexico


I. Cosme
CONACyT-INAOE
Мексика
Ismael Cosme, PhD from INAOE in 2013, Associated researcher, Optics and Electronics Dept., Puebla, 42840, Mexico


S. Mansurova
National Institute for Astrophysics, Optics and Electronics (INAOE)
Мексика
Svetlana Mansurova, PhD from National Institute for Astrophysics, Optics and Electronics (Mexico) in 1998. Titular Researcher, Optics and Electronics Dept., Puebla, 42840, Mexico


D. Andronikov
R&D Center of Thin Film Technologies in Energetics LLC, (RDC TFTE); Ioffe Physics and technical Institute
Россия
Dmitriy Andronikov, Cand. Sci. (Eng.) in Physics and Mathematics in the specialty of "Semiconductors and Dielectrics" (2013), 28 Polytechnicheskaya St., 194064, St Petersburg, Russia


А. Abramov
R&D Center of Thin Film Technologies in Energetics LLC, (RDC TFTE); Ioffe Physics and technical Institute
Россия
Alexey Abramov, Cand. Sci. (Eng.) in Physics and Mathematics in the specialty of "Semiconductors and Dielec-trics» (2001), 28 Polytechnicheskaya St., 194064, St Petersburg, Russia


I. Shakhray
Saint Petersburg Electrotechnical University "LETI"; Hevel LLC
Россия
Igor Shakhray, CEO from Hevel LLC, Doctorant, 429950, Novocheboksarsk, Russia


Eu. Terukov
R&D Center of Thin Film Technologies in Energetics LLC, (RDC TFTE); Ioffe Physics and technical Institute; Hevel LLC
Россия
Eugeny Terukov, Dr. Sci. (Eng.) in Technical Sciences in the specialty of "Semiconductors and Dielectrics" (1996), Professor, Head of laboratory, 26 Polytechnicheskaya St., 194021, St Petersburg, Russia


Список литературы

1. Krebs Frederik C. Fabrication and processing of polymer solar cells: A review of printing and coating techniques. Solar Energy Materials & Solar Cells. 2009, vol. 93, iss. 4, pp. 394–412. doi: 10.1016/j.solmat.2008.10.004

2. Spear W. E., Le P.G. Comber Electronic propertiesw of substitutionally doped amorphous Si and Ge. Philosophical Magazine. 1976, vol. 33, iss. 6, pp. 935-949. doi: 10.1080/14786437608221926

3. Yang J, Banerjee A., Guha S. Triple junction amorphous silicon alloy solar cell with 14.6% initial and 13.0% stable conversion efficiencies. Appl. Phys. Lett. 1997, vol. 70, iss. 22, pp. 2975-2977. doi: 10.1063/1.118761

4. Shah A. V., Shade H., Vanecek M., Meier J., Vallat-Sauvain E., Wyrsch N., Kroll U., Droz C., Bailat J. Thin film silicon solar cell technology. Prog-Photovolt: Res. Appl. 2004, vol. 12, iss. 23, pp. 113-142. doi: 10.1002/pip.533

5. Gather M. C., Mansurova S., Meerholz K. Determining the photoelectric parameters of an organic photoconductor by the photoelectromotive-force technique. Phys. Rev. B, 2007, vol. 75, iss. 16. doi: 10.1103/physrevb.75.165203

6. Moon J. S., Takacs C. J., Sun Y., Heeger A. J. Spontaneous Formation of Bulk Heterojunction Nanostructures: Multiple Routes to Equivalent Morphologies, Nano Lett. 2011, vol. 11, iss. 3, pp. 1036-1039. doi: 10.1021/nl200056p

7. Yang X., Loos J., Veenstra S. C., Verhees W. J. H., Wienk M. M., Kroon J. M., Michels M. A. J., Janssen R. A. J. Nanoscale Morphology of High-Performance Polymer Solar Cells Nano Lett. 2005, vol. 5, iss. 4, pp. 579-583. doi: 10.1021/nl048120i

8. Peet J., Kim J. Y., Coates N. E., Ma W. L., Moses D., Heeger A. J., Bazan G. C., Efficiency enhancement in lowbandgap polymer solar cells by processing with alkane dithiols. Nat. Mater. 2007, vol. 6, iss. 7, pp. 497-500. doi: 10.1038/nmat1928

9. Ma W., Yang C., Gong X., Lee K., Heeger A. J. Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology, Adv. Funct. Mater. 2005, vol. 15, iss. 10, pp. 1617-1622. doi: 10.1002/adfm.200500211

10. Li G., Shrotriya V., Huang J., Yao Y., Moriarty T., Emery K., Yang Y. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat. Mater. 2005, vol. 4, iss. 11, pp. 864-868. doi: 10.1038/nmat1500

11. Lee J. K., Ma W. L., Brabec C. J., Yuen J., Moon J. S., Kim J. Y., Lee K., Bazan G. C., Heeger A. J. Processing additives for improved efficiency from bulk heterojunction solar cells. J. Am. Chem. Soc. 2008, vol. 130, iss. 11, pp. 3619-3623. doi: 10.1021/ja710079w

12. Guo X., Marks T. J. Plastic solar cells with engineered interfaces. Proc. SPIE., Proc. Art. published 6 Mar 2013 in Organic Photonic Materials and Devices XV, 2013. doi: 10.1117/12.2013491

13. Zeng H., Zhu X., Liang Y., Guo X. Interfacial Layer Engineering for Performance Enhancement in Polymer Solar Cells. Polymers. 2015, vol. 7, iss. 2, pp. 333-372. doi: 10.3390/polym7020333

14. Steim R., Kogler F. R., Brabec C. J. Interface materials for organic solar cells. J. Mater. Chem., vol. 20, iss. 13, 2499 p., 2020. doi: 10.1039/b921624c

15. Choi H., Kim H.-B., Ko S.-J., Kim J. Y., Heeger A. J. An organic surface modifier to produce a high work function transparent electrode for high performance polymer solar cells. Adv. Mater. 2015, vol. 27, iss. 5, pp. 892-896. doi: 10.1002/adma.201404172

16. Kim J. Y., Kim S. H., Lee H. H., Lee K., Ma W., Gong X., Heeger A. J. New Architecture for High-Efficiency Polymer Photovoltaic Cells Using Solution-Based Titanium Oxide as an Optical Spacer. Adv. Mater. 2006, vol. 18, iss. 5, pp. 572-576, doi: 10.1002/adma.200501825

17. Hadipour A., B. de Boer, Wildeman J., Kooistra F. B., Hummelen J. C., Turbiez M. G. R., Wienk M. M., Janssen R. A. J., Blom P. W. M. Solution-processed organic tandem solar cells. Adv. Funct. Mater. 2016, vol. 16, iss. 14, pp. 1897-1903. doi: 10.1002/adfm.200600138

18. Kim J. Y., Lee K., Coates N. E., Moses D., Nguyen T.-Q., Dante M., Heeger A. J. Efficient tandem polymer solar cells fabricated by all-solution processing. Science. 2007, vol. 317, iss. 5835, pp. 222-225. doi: 10.1126/science.1141711

19. Sista S., Hong Z., Park M.-H., Xu Z., Yang Y. High-Efficiency Polymer Tandem Solar Cells with Three-Terminal Structure. Adv. Mater. 2010, vol. 22, iss. 8, pp. E77-E80. doi: 10.1002/adma.200902750

20. Dou L., You J., Yang J., Chen C.-C., He Y., Murase S., Moriarty T., Emery K., G. Li, Yang Y. Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer. Nat. Photonics. 2012, vol. 6, iss. 3, pp. 180-185. doi: 10.1038/nphoton.2011.356

21. Chen C.-C., Chang W.-H., K. Yoshimura, Ohya K., You J., Gao J., Hong Z., Yang Y. An efficient triple-junction polymer solar cell having a power conversion efficiency exceeding 11%. Adv. Mater. 2014, vol. 26, iss. 32, pp. 5670-5677. doi: 10.1002/adma.201402072

22. Wienk M. M., Kroon J. M., Verhees W. J. H., Knol J., Hummelen J. C., van Hal P. A., Janssen R. A. J. Efficient methano[70]fullerene/MDMO-PPV bulk heterojunction photovoltaic cells. Angew. Chem. Int. Ed. 2003, vol. 42, iss. 29, pp. 3371-3375. doi: 10.1002/anie.200351647

23. Winder C., Sariciftci N. S. Low bandgap polymers for photon harvesting in bulk heterojunction solar cells. J. Mater. 2004, Chem., vol. 14, iss. 7, 1077 p. doi: 10.1039/b306630d

24. Kroon R., Lenes M., Hummelen J. C., Blom P. W. M., de Boer B. Small Bandgap Polymers for Organic Solar Cells (Polymer Material Development in the Last 5 Years). Polym. Rev. 2008, vol. 48, iss. 3, pp. 531-582. doi: 10.1080/15583720802231833

25. Bundgaard E., Krebs F. C. Low band gap polymers for organic photovoltaics. Sol. Energy Mater. Sol. Cells. 2007, vol. 91, ss. 11, pp. 954-985. doi: 10.1016/j.solmat.2007.01.015

26. Zhu Z., Waller D., Gaudiana R., Morana M., Mühlbacher D., Scharber M., Brabec C. Panchromatic Conjugated Polymers Containing Alternating Donor/ Acceptor Units for Photovoltaic Applications. Macromolecules. 2007, vol. 40, iss. 6, pp. 1981-1986. doi: 10.1021/ma062376o

27. Facchetti A. Mater. Polymer donor–polymer acceptor (all-polymer) solar cells. Maerials Today. 2013, vol. 16, iss. 4, pp. 123-132. doi: 10.1016/j.mattod.2013.04.005

28. Zhao J., Li Y., Yang G., Jiang K., Lin H., Ade H., Ma W., Yan H. Efficient organic solar cells processed from hydrocarbon solvents. Nat. Energy. 2016, vol. 1, iss. 2. doi: 10.1038/nenergy.2015.27

29. Dou L., You J., Chen C.-C., Li G., Yang Y. Plastic Solar Cells: Breaking the 10% Commercialization Barrier. Proc. SPIE., 25 Sep. 2012. doi: 10.1117/12.930410

30. Naguchi M., Yano A., Tohoda S., Matsuyama K., Nakamura Y., Nishiwaki T., Fujita K., Maruyama E. 24.7% Record efficiency HIT solar cell on thin silicon wafer, IEEE J. Photovoltaics. 2014, vol. 4, iss. 1, pp. 96-99. doi: 10.1109/JPHOTOV.2013.2282737


Для цитирования:


Kosarev А., Cosme I., Mansurova S., Andronikov D., Abramov А., Shakhray I., Terukov E. Plasma Enhanced Chemical Vapor Deposited Materials and Organic Semiconductors in Photovoltaic Devices. Известия высших учебных заведений России. Радиоэлектроника. 2020;23(4):38-47. https://doi.org/10.32603/1993-8985-2020-23-4-38-47

For citation:


Kosarev A., Cosme I., Mansurova S., Andronikov D., Abramov A., Shakhray I., Terukov E. Plasma Enhanced Chemical Vapor Deposited Materials and Organic Semiconductors in Photovoltaic Devices. Journal of the Russian Universities. Radioelectronics. 2020;23(4):38-47. https://doi.org/10.32603/1993-8985-2020-23-4-38-47

Просмотров: 22


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1993-8985 (Print)
ISSN 2658-4794 (Online)