Preview

Journal of the Russian Universities. Radioelectronics

Advanced search

Comparison of Radio Interferometers with Analog and Digital Extraction of Recorded Signal

https://doi.org/10.32603/1993-8985-2020-23-2-6-18

Abstract

Introduction. Radio telescopes of Very Long Baseline Interferometry (VLBI) networks usually record several signals with relatively narrow (up to 32 MHz) bands, which are extracted by means of base band converters (BBC) from an analog noise signal of an intermediate frequency (IF) with bands up to 1 GHz. When processing data, frequency band synthesis is used. At new small radio telescopes (for example, RT-13), directly wideband IF signals are digitized. An ability to connect the RT-13 radio telescope to the “Quasar” VLBI complex and to international VLBI networks provides by a digital narrow-band signal extraction module developed in 2019.

Aim. Determining the measuring accuracy of an interferometric group delay of a signal by a radio interferometer with a digital narrow-band signal extraction module and comparing the sensitivity of interferometers with analog and digital signal extraction systems.

Materials and methods. Sensitivity losses of interferometers with different systems for detecting recorded signals were calculated. The accuracy of a multi-channel interferometer with the synthesis of a frequency band and of an interferometer with recording of digital broadband IF signals without band synthesis was compared. The results were confirmed by VLBI observations in the observatories of the “Quasar” complex.

Results. When replacing the analog system of signal extraction with digital system the sensitivity losses of the interferometer were slightly reduced. The measurement accuracy of the interferometric group delay had not changed. Accuracy increased when digitally recording broadband IF signals and when synthesizing a frequency band significantly larger than the IF bandwidth. Conditions and minimum synthesized bands were determined under which the accuracy of the interferometer with the registration of narrowband signals can be higher than the accuracy of the interferometer with the registration of wideband IF signals.

Conclusion. The problem of combining RT-13 radio telescopes with VLBI networks with recording of video frequency signals was solved. The efficiency of the installation of digital signal conversion systems at radio telescopes was shown.

About the Authors

N. E. Kol'tso
Saint Petersburg Electrotechnical University; Institute of Applied Astronomy of Russian Academy of Sciences
Russian Federation

Nikolai E. Kol'tsov, Dr. Sci. (Eng.) (1982), Professor (1985), Honored Scientist of RF (2001), the chief researcher 

Professor of the Department of Radio Astronomy 

The author of more than 140 scientific publications. Area of expertise: radio astronomy, instrumentation, radio interferometry and radiometry.



S. A. Grenkov
Institute of Applied Astronomy of Russian Academy of Sciences
Russian Federation

Sergei A. Grenkov, Cand. Sci. (Eng.) (2009), Researcher 

The author of more than 50 scientific publications. Area of expertise: processing techniques of radio astronomy signal; computer control systems



L. V. Fedotov
Institute of Applied Astronomy of Russian Academy of Sciences
Russian Federation

Leonid V. Fedotov, Dr. Sci. (Eng.) (2016), Leading Scientist 

Author of more than 100 scientific publications. Area of expertise: very long base interferometry, data acquisition systems, design of radio astronomy instrumentation.



References

1. Petrachenko W. T. VLBI Data Acquisition and Recorder Systems: a Summary and Comparison. IVS 2000 General Meeting Proc. Greenbelt, USA: Goddart spase flight center, 2000, pp. 76–85. NASA/CP-2000-209893. Available at: https://ivscc.gsfc.nasa.gov/publications/gm2000/petrachenko2.pdf (accessed 07.03.2020)

2. Finkelstein A., Ipatov A., Smolentsev S. The Network "Quasar": 2008–2011. Measuring the Future: Proc. of the Fifth IVS General Meeting. SPb, 3–6 March 2008. Moscow, Nauka, 2008, pp. 39–46.

3. Grenkov S. A., Nosov E. V., Fedotov L. V., Kol'tsov N. E. A Digital Radio Interferometric Data Acquisition System. Instruments and Experimental Techniques. 2010, vol. 53, no. 5, pp. 675–681. doi: 10.1134/S002044121005009X

4. Shuygina N., Ivanov D., Ipatov A., Gayazov I., Marshalov D., Melnikov A., Kurdubov S., Vasilyev M., Ilin G., Skurikhina E., Surkis I., Mardyshkin V., Mikhailov A., Salnikov A., Vytnov A., Rakhimov I., Dyakov A., Olifirov V. Russian VLBI network "Quasar": Current status and outlook. Geodesy and Geodynamics. 2019, vol. 10, iss. 2, pp. 150– 156. doi: 10.1016/j.geog.2018.09.008

5. Whitney A., Kettenis M., Phillips C., Sekido M. VLBI Data Interchange Format (VDIF). IVS 2010 General Meeting Proc. "VLBI2010: From Vision to Reality". Hobart, Australia, Febr. 7–14 2010. Greenbelt, USA: Goddart spase flight center, 2010, pp. 192–196. NASA/CP-2010-215864.

6. Whitney A. R. The VLBI Standard Interface Hardware (VSI-H) Interface Specification. Available at: https://vlbi.org/wp-content/uploads/2019/03/VSI_H_paper_for_IVS_TOW.pdf (accessed 11.03.2020).

7. Zharov A. E. Osnovy radioastrometrii [Basics of Radio Astrometry]. Moscow, Izd-vo Moskovskogo universiteta, 2011, 280 p. (In Russ.)

8. Surkis I. F., Zimovsky V. F., Shantyr V. A., Melnikov A. E. A Correlator for the Quasar VLBI Network. Instruments and Experimental Techniques. 2011, vol. 54, no. 1, pp. 84–91. doi: 10.1134/S0020441211010106

9. Thompson A. R., Moran J., Swenson Jr. G. W. Interferometry and Synthesis in Radio Astronomy. 3rd Ed. Springer Open, 2017, 872 p. doi: 10.1007/978-3-319-44431-4

10. Tuccari G., Alef W., Dornbusch S., Haas R., Johansson K.-A., Rottmann H., Roy A., Wunderlich M. New Observing Modes for the DBBC3. IVS 2018 General Meeting Proc. "Global Geodesy and the Role of VGOS – Fundamental to Sustainable Development". Longyearbyen, Norway, 3–8 July 2018. Greenbelt, USA, Goddart spase flight center, 2018, pp. 47–49. NASA/CP-2019-219039.

11. Kol'tsov N. E., Grenkov S. A., Fedotov D. V. Cifrovye radioastronomicheskie sistemy registracii signalov [Digital Radio Astronomy Signal Recording Systems]. SPb., Izd-vo SPbGETU "LETI", 2019, 155 p. (In Russ.)

12. Ipatov A. V. A New-Generation Interferometer for Fundamental and Applied Research. Physics-Uspekhi. 2013, vol. 56, no. 7, pp. 729–737. doi: 10.3367/ufne.0183.201307i.0769

13. Nosov E. V., Kol’tsov N. E., Fedotov L. V., Grenkov S. A. A Multifunctional Digital Converter for Radio-Astronomy Signals with a Bandwidth of Up to 512 MHz. Instruments and Experimental Techniques. 2017, vol. 60, no. 2, pp. 202–209. doi: 10.1134/S0020441217010250

14. Grenkov S. A., Kol’tsov N. E. Spectral-Selective Radiometer Unit with Radio-Interference Protection. Radiophysics and Quantum Electronics. 2015, vol. 58, no. 7, pp. 520–528. doi: 10.1007/s11141-015-9625-y

15. Surkis I. F., Zimovsky V. F., Ken V. O., Kurdubova Y. L., Mishin V. Y., Mishina N. A., Shantyr V. A. A Radio Interferometric Correlator Based on Graphics-Processing Units. Instruments and Experimental Techniques. 2018, vol. 61, no. 6, pp. 772–779. doi: 10.1134/S0020441218060131

16. Fedotov L. V., Kol’tsov N. E. Pat. RF 176177 U1. МПК H03D 7/00 (2006.01). Broadband Signal Conversion and Recording System for Radio Astronomy Interferometer. Publ. 11.01.2018. (In Russ.)

17. Tuccari G., Alef W., Pantaleev M., Flygare J., Lopez Perez J. A., Lopez Fernandez J. A., Schoonderbeek G. W., Bezrukovs V. BRAND: a Very Wide-Band Receiver for the EVN. Proc. of the 23rd European VLBI Group for Geodesy and Astrometry Working Meeting, Gothenburg, Sweeden, May 2017. Molndal, Sweeden, Billes Tryckeri AB, 2017, pp. 81–83.

18. Mamoru S., Kazuhiro T., Hideki U., Tetsuro K., Masanori T., Yuka M., Eiji K., Hiroshi T., Shingo H., Ryuichi I., Yasuhiro K., Yuko H., Kenichi W., Tomonari S., Junichi K., Kenjiro T., Kunitaka N., Rumi T., Yoshihiro O., Tetsuro A., Takatoshi I. An Overview of the Japanese GALA-V Wideband VLBI System. IVS 2016 General Meeting Proc. "New Horizons with VGOS". Johannesburg, South Africa, March 13–17, 2016. Greenbelt, USA, Goddart spase flight center, 2016, pp. 25–33. NASA/CP-2016-219016.

19. Ivanov D. V., Mardyshkin V. V., Lavrov A. S., Evstigneev A. A. Trjohdiapazonnaja prijomnaja sistema dlja radioteleskopov s malymi antennami [Three-Band Receiving System for Radio Telescopes with Small Antennas]. Trudy IPA RAN. SPb., 2013, vol. 27, pp. 197–203. (In Russ.)

20. Whitney A. The Mark 5B VLBI Data System. Proc. of the 7th Symp. of the European VLBI Network on New Developments in VLBI Science and Technology. Toledo, October, 12–15 2004. Madrid, Observatorio Astronómico Nacional de España, 2004, pp. 251–252.

21. Kol'tsov N. E., Grenkov S. A. The Digital Down Converters for a Radio Astronomy Data Acquisition Systems. Journal of the Russian Universities. Radioelectronics. 2017, no. 5, pp. 19–27. (In Russ.)

22. Grenkov S. A., Kol'tsov N. E. Pat. RF 181253 U1. МПК Н03D 7/00, H04B 1/16 (2006.01). Digital Local Oscillator on a Programmable Logic Integrated Circuit. Publ. 06.07.2018. (In Russ.)

23. Grenkov S. A., Kol'tsov N. E., Fedotov L. V. Pat. RF 188320 U1. МПК Н04J 14/00, H04B 1/00, H04B 17/00, H04Q 1/20 (2006.01). Digital Broadband Signal Extraction Device. Publ. 08.04.2019.

24. Nosov E., Ivanov D., Ipatov A., Mardyshkin V., Marshalov D., Mikhailov A., Rakhimov I., Salnikov A., Vytnov A. Extending “Quasar” VLBI-Network: VGOS-compatible Radio Telescope in Svetloe. IVS 2018 General Meeting Proc. "Global Geodesy and the Role of VGOS – Fundamental to Sustainable Development". Longyearbyen, Norway, 3–8 July 2018. Greenbelt, USA, Goddart spase flight center, 2018, pp. 12–16. NASA/CP–2019-219039.


Review

For citations:


Kol'tso N.E., Grenkov S.A., Fedotov L.V. Comparison of Radio Interferometers with Analog and Digital Extraction of Recorded Signal. Journal of the Russian Universities. Radioelectronics. 2020;23(2):6-18. https://doi.org/10.32603/1993-8985-2020-23-2-6-18

Views: 1143


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1993-8985 (Print)
ISSN 2658-4794 (Online)