Preview

Известия высших учебных заведений России. Радиоэлектроника

Расширенный поиск

Dispersion Characteristics of Spin-Electromagnetic Waves in Planar Multiferroic Structures with Coplanar Transmission Line

https://doi.org/10.32603/1993-8985-2019-22-6-55-63

Полный текст:

Аннотация

Introduction. The distinctive feature of a coplanar transmission line with thin ferrite and ferroelectric films is the absence of undesirable irregularities in dispersion for relatively low frequencies when the wavelength approaches the thickness of ferroelectric layer, in contrast to the open ferrite-ferroelectric wave-guiding structure without metallization.

Aim. The purpose of this paper is twofold: (i) to develop a theory of the wave spectra in the multiferroic structures based on the coplanar lines; (ii) using this theory to find ways to enhance the electric tuning range.

Materials and methods. The dispersion relation for spin-electromagnetic waves was derived through analytical solution of the full set of the Maxwell's equations utilizing a method of approximate boundary conditions.

Results. A theory of spin-electromagnetic wave spectrum has been developed for the thin-film ferrite-ferroelectric structure based on a coplanar transmission line. According to this theory, dispersion characteristics of the spin-electromagnetic waves were described and analyzed for different parameters of the structure. The obtained results show that the investigated structure demonstrates a dual electric and magnetic field tunability of wave spectra. Its efficiency increases with an increase in the thicknesses of the ferrite and ferroelectric films and with a decrease in the width of the central metal strip.

Conclusion. The distinctive features of the proposed coplanar waveguides are the thin-film planar topology and dual tunability of the wave spectra. All these advantages make the proposed structures perspective for development of new microwave devices.

Об авторах

Aleksei А. Nikitin
Saint Petersburg Electrotechnical University; LUT-University
Россия

Master Degree on electronic and nanoelectronic and Master of Science (Technology): Computational Engineering (2015), Assistant Professor (2019) of the Department of Physical Electronics and Technology.

5 Professor Popov Str., Saint Petersburg 197376



Alexey B. Ustinov
Saint Petersburg Electrotechnical University
Россия

Dr. Sci. (Phys.-Math.) (2012), Associate Professor (2010) of the Department of Physical Electronics and Technologies.

5 Professor Popov Str., Saint Petersburg 197376



Andrey А. Nikitin
Saint Petersburg Electrotechnical University
Россия

Cand. Sci. (Phys.-Math.) (2011), Associate Professor (2015) of the Department of Physical Electronics and Technology.

5 Professor Popov Str., Saint Petersburg 197376



Erkki Lähderanta
LUT-University
Финляндия

Doctor of Philosophy (Solid State Physics) (1993), Professor in Physics (2004).

34 Yliopistonkatu, Lappeenranta, 53850



Boris А. Kalinikos
Saint Petersburg Electrotechnical University
Россия

Dr. Sci. (Phys.-Math.) (1985), Distinguished Professor (2019).

5 Professor Popov Str., Saint Petersburg 197376


Список литературы

1. Setter N., Damjanovic D., Eng L., Fox G., Gevorgian S. Ferroelectric Thin Films: Review of Materials, Properties, and Applications. J. of Applied Physics, 2006, vol. 100, pp. 051606. doi: 10.1063/1.2336999

2. Stancil D. D., Prabhakar A. Spin Waves: Theory and Applications. New York, Springer, 2009. 348 p. doi: 10.1007/978-0-387-77865-5

3. Demidov V. E., Kalinikos B. A., Edenhofer E. Dipole-Exchange Theory of Hybrid Electromagnetic-Spin Waves in Layered Film Structures. J. of Applied Physics, 2002, vol. 91, pp. 10007-10016. doi: 10.1063/1.1475373

4. Semenov A. A., Karmanenko S. F., Demidov V. E., Kalinikos B. A., Srinivasan G., Slavin A. N., Mantese J. V. Ferrite-Ferroelectric Layered Structures for Electrically and Magnetically Tunable Microwave Resonators. Applied Physics Letters, 2006, vol. 88, iss. 3, pp. 033503. doi: 10.1063/1.2166489

5. Srinivasan G., Tatarenko A. S., Bichurin M. I. Electrically Tunable Microwave Filters Based on Ferromagnetic Resonance in Ferrite-Ferroelectric Bilayers. Electronics Letters, 2005, vol. 41, iss. 10 pp. 596-598. doi: 10.1049/el:20050925

6. Tatarenko A. S., Bichurin M. I. Microwave Magnetoelectric Devices. Advances in Condensed Matter Physics, 2012, vol. 2012, p. 1 -10. doi: 10.1155/2012/286562

7. Sadovnikov A. V., Grachev A. A., Beginin E. N., Odintsov S. A., Sheshukova S. E., Sharaevskii Y. P., Nikitov S. A. Spatial Dynamics of Hybrid Electromagnetic Spin Waves in a Lateral Multiferroic Microwaveguide. JETP Letters, 2017, vol. 105, pp. 364-369.

8. Wang L., Bai Y., Lu X., Cao J. L., Qiao L. J. Ultra-Low Percolation Threshold in Ferrite-Metal Cofired Ceramics Brings Both High Permeability and High Permittivity. Scientific reports, 2015, vol. 5, article number 7580. doi: 10.1038/srep07580.

9. Nan C. W., Bichurin M. I., Dong S., Viehland D., Srinivasan, G. Multiferroic Magnetoelectric Composites: Historical Perspective, Status, and Future Directions. J. of Applied Physics, 2008, vol. 103, iss. 3, pp. 031101. doi: 10.1063/1.2836410

10. Fetisov Y. K., Srinivasan G. Electrically Tunable Ferrite-Ferroelectric Microwave Delay Lines. Applied Physics Letters, 2005, vol. 87, iss. 10, pp. 103502. doi: 10.1063/1.2037860

11. Zhu M., Nan T., Liu M., Ren W. Zhou Z., Sun N. X. Voltage Tuning of Ferromagnetic Resonance and Lin-ewidth in Spinel Ferrite/Ferroelectric Multiferroic Heterostructures. IEEE Magnetics Letters, 2015, vol. 6, p. 1-4. doi: 10.1109/LMAG.2015.2425360

12. Popov M. A., Zavislyak I. V., Srinivasan G., Zago-rodnii V. V. Coupled Magnetostatic and Electromagnetic Oscillations in Hexaferrite-Dielectric Heterostructures. J. of Applied Physics, 2009, vol. 105, iss. 8, pp. 083912. doi: 10.1063/1.3108895

13. Ustinov A. B., Srinivasan G., Kalinikos B. A. Ferrite-Ferroelectric Hybrid Wave Phase Shifters. Applied Physics Letters, 2007, vol. 90, iss. 3, pp. 031913. doi: 10.1063/1.2432953

14. Leach J. H., Liu H., Avrutin V., Rowe E., OzgGr 0., Morkoq H., Wu M. Electrically and Magnetically Tunable Phase Shifters Based on a Barium Strontium Titanate-Yttrium Iron Garnet Layered Structure. J. of Applied Physics, 2010, vol. 108, iss. 6, pp. 064106. doi: 10.1063/1.3486463

15. Nikitin A. A., Ustinov A. B., Semenov A. A., Kalinikos B. A., Lahderanta E. All-Thin-Film Multilayered Mul-tiferroic Structures with a Slot-Line for Spin-Electromagnetic Wave Devices. Applied Physics Letters, 2014, vol. 104, iss. 9, pp. 093513. doi: 10.1063/1.4867985

16. Vopson M. M. Fundamentals of Multiferroic Materials and Their Possible Applications. Critical Reviews in Solid State and Materials Sciences, 2015, vol. 40, iss. 4, pp. 223-250. doi: 10.1080/10408436.2014.992584

17. Zhang J. S., Zhanga R. L., Hu Q., Fan R. H., Penga R. W. Tunable Microwave Multiband Filters Based on a Waveguide with Antiferromagnetic and Dielectric Sandwiches. Journal of Applied Physics. 2011, vol. 109, iss. 7, 07A305. doi: 10.1063/1.3535440

18. Morozova M. A., Grishin S. V., Sadovnikov A. V., Romanenko D. V., Sharaevskii Y. P., Nikitov S. A. Tunable Bandgaps in Layered Structure Magnonic Crystal-Ferroelectric. IEEE Transactions on Magnetics, 2015, vol. 51, iss. 11, pp. 1-4. doi: 10.1109/TMAG.2015.2446763

19. Sadovnikov A. V., Beginin E. N., Bublikov K. V., Grishin S. V., Sheshukova S. E., Sharaevskii Y. P., Nikitov, S. A. Brillouin Light Scattering Study of Transverse Mode Coupling in Confined Yttrium Iron Garnet/Barium Strontium Titanate Multiferroic. Journal of Applied Physics. 2015, vol. 118, iss. 20, 203906. doi: 10.1063/1.4936320

20. Brandl F., Franke K. J. A., Lahtinen T. H. E., van Dijken S., Grundler D. Spin Waves in CoFeB on Ferroelectric Domains Combining Spin Mechanics and Magnonics. Solid State Communications. 2014, vol. 198, pp. 13-17. doi: 10.1016/j.ssc.2013.12.019

21. Morozova M. A., Matveev O. V., Sharaevskii Y. P., Nikitov S. A. Tuning the Bandgaps in a Magnonic Crystal-Ferroelectric-Magnonic Crystal Layered Structure. Physics of the Solid State. 2016, vol. 58, iss. 2, pp. 273-279. doi: 10.1134/S1063783416020207

22. Brandl F., Franke K. J. A., Lahtinen T. H. E., van Dijken S., Grundler, D. Spin Waves in CoFeB on Ferroelectric Domains Combining Spin Mechanics and Mag-nonics. Solid State Communications. 2014, vol. 198, p. 13-17. doi: 10.1016/j.ssc.2013.12.019

23. Sadovnikov A. V., Bublikov K. V., Beginin E. N., Sheshukova S. E., Sharaevskii Y. P., Nikitov S. A. Nonreciprocal Propagation of Hybrid Electromagnetic Waves in a Layered Ferrite-Ferroelectric Structure with a Finite Width. JETP letters. 2015, vol. 102, iss. 3, pp. 142-147. doi: 10.1134/S0021364015150102

24. Morozova M. A., Matveev O. V., Sharaevskii Y. P., Nikitov S. A. Tuning the Bandgaps in a Magnonic Crystal-Ferroelectric-Magnonic Crystal Layered Structure. Physics of the Solid State. 2016, vol. 58, iss. 2, pp. 273-279. doi: 10.1134/S1063783416020207

25. Nikitin A. A., Vitko V. V., Nikitin A. A., Kondrashov A. V., Ustinov A. B., Semenov A. A., Lahderanta E. Dual Tuning of Doubly Hybridized Spin-Electromagnetic Waves in All-Thin-Film Multiferroic Multilayers. IEEE Transactions on Magnetics. 2017, vol. 53, iss. 11, pp. 1-5. doi: 10.1109/TMAG.2017.2714841

26. Semenov A. A., Beljavski P. Y., Nikitin A. A., Karmanenko S. F., Kalinikos B. A., Srinivasan G. Dual Tunable Thin-Film Ferrite-Ferroelectric Slotline Resonator. Electronics Letters. 2008, vol. 44, iss. 24, pp. 1406-1407.

27. Kim W. J. Electrically and Magnetically Tunable Microwave Device Using (Ba, Sr) TiO3/Y3Fe5O12 Multilayer. Applied Physics A. 2000, vol. 71, no. 1, pp. 7-10.

28. Collin R. E. Field Theory of Guided Waves. New York, Wiley-IEEE Press, 1990 864 p.

29. Nikitin A. A., Ustinov A. B., Vitko V. V., Semenov A. A., Belyavskiy P. Y., Mironenko I. G., Lahderanta E. Dispersion Characteristics of Spin-Electromagnetic Waves in Planar Multiferroic Structures. Journal of Applied Physics. 2015, vol. 118, iss. 18, pp. 183901. doi: 10.1063/1.4935266

30. Meixner J. The Behavior of Electromagnetic Fields at Edges. IEEE Transactions on Antennas and Propagation. 1972, vol. 20, iss. 4, pp. 442-446. doi: 10.1109/TAP.1972.1140243

31. Gradshteyn I. S., Ryzhik I. M. Table of Integrals, Series, and Products. 7th ed. USA, Academic Press, 2007. 1200 p.

32. Frey N. A., Heindl R., Srinat, S., Srikanth H., Dud-ney N. J. Microstructure and Magnetism in Barium Strontium Titanate (BSTO)-Barium Hexaferrite (BaM) Multilayers. Materials Research Bulletin. 2005, vol. 40, iss. 8, pp. 1286-1293. doi: 10.1016/j.materresbull.2005.04.006


Для цитирования:


Nikitin A.А., Ustinov A.B., Nikitin A.А., Lähderanta E., Kalinikos B.А. Dispersion Characteristics of Spin-Electromagnetic Waves in Planar Multiferroic Structures with Coplanar Transmission Line. Известия высших учебных заведений России. Радиоэлектроника. 2019;22(6):55-63. https://doi.org/10.32603/1993-8985-2019-22-6-55-63

For citation:


Nikitin A.A., Ustinov A.B., Nikitin A.A., Lähderanta E., Kalinikos B.A. Dispersion Characteristics of Spin-Electromagnetic Waves in Planar Multiferroic Structures with Coplanar Transmission Line. Journal of the Russian Universities. Radioelectronics. 2019;22(6):55-63. https://doi.org/10.32603/1993-8985-2019-22-6-55-63

Просмотров: 113


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1993-8985 (Print)
ISSN 2658-4794 (Online)