Preview

Известия высших учебных заведений России. Радиоэлектроника

Расширенный поиск

Spin-Orbitronics a Novel Trend in Spin Oriented Electronics

https://doi.org/10.32603/1993-8985-2019-22-6-45-54

Полный текст:

Аннотация

Introduction. The advent of spin oriented electronics, or spintronics, in the late 1980ies has not only revolutionised the very idea of contemporary electronics but has also brought about a major technological breakthrough in the field of information storage and processing. Further progress is associated with the rapidly emerging field of spinorbitronics seeking to put to maximum use the SOC (Spin-Orbit Coupling) related phenomena.

Aim. The purpose of this review paper is to outline the major trends in the dynamically developing field of spinorbitronics in the context of evolution of the mainstream spintronics. SOC related effects open up the possibility of creation of a new generation of energy saving devices, a key challenge in electronics in general.

Materials and methods. A special effort has been undertaken to make the article appealing to the general reader, especially to specialists in the field of radioelectronics and data processing. To this end, in the description of the complex physics underlying magnetic interactions preference is given to simple term "naive" interpretations.

Results. Apart from the analysis of the fundamental features peculiar to the interfaces between ultrathin films of ferromagnetic and heavy metals and related to strong SOC, we discuss specific configurations especially promising for application-oriented research. Among others, these include spin torque microwave (1...50 GHz) oscillators, fast domain walls in racetrack memory and especially magnetic skyrmions.

Conclusion. Publication of this paper will facilitate creative interaction between the fundamental and applied research, thus contributing to the development of novel high-performance spintronic devices.

Об авторе

Andrey А. Stashkevich
Institut Galilee, Universite Sorbonne Paris Cité
Франция

Andrey A. Stashkevich = Dr. Sci. (Eng.) (1994), Professor (2001) of Physics.

Laboratoire des Sciences des Procedes et des Materiaux- LSPM - CNRS UPR3407, 99 avenue J.B. Clement, Villetaneuse 93 430



Список литературы

1. Mott N. F. The Electrical Conductivity of Transition Metals. Proc. Roy. Soc. A. 1936, vol. 153, iss. 880, pp. 699-717. doi: 10.1098/rspa.1936.0031

2. Fert A., Campbell I. A. Two-Current Conduction in Nickel. Phys. Rev. Lett. 1968, vol. 21, iss. 16, pp. 11901192. doi: 10.1103/PhysRevLett.21.1190

3. Loegel B., Gautier F. Origine de la resistivite dans le cobalt et ses alliages dilues. J. Phys. Chem. Sol. 1971, vol. 32, iss. 12, pp. 2723-2735. doi: 10.1016/S0022-3697(71)80364-5

4. Fert A., Campbell I. A. Transport Properties of Ferromagnetic Transition Metals. J. de Physique. Colloque C 1. 1971, vol. 32, no. 2-3, pp. C1-46-C1 -50.

5. Baibich M. N., Broto J. M., Fert A., Nguyen Van Dau F., Petroff F., Etienne P., Creuzet G., Friederich A., Chazelas J. Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices. Phys. Rev. Lett. 1988, vol. 61, iss. 21, pp. 2472-2475. doi: 10.1103/PhysRevLett.61.2472

6. Binash G., GrGnberg P., Saurenbach F., Zinn W. Enhanced Magnetoresistance in Layered Magnetic Structures with Antiferromagnetic Interlayer Exchange. Phys. Rev. B. 1989, vol. 39, iss.7, pp. 4828-4830. doi: 10.1103/PhysRevB.39.4828

7. GrGnberg P., Schreiber R., Young Y., Brodsky M. B., Sowers H. Layered Magnetic Structures: Evidence for Antiferromagnetic Coupling of Fe Layers across Cr Interlayers. Phys. Rev. Lett. 1986, vol. 57, iss. 19, pp. 2442-2445. doi: 10.1103/PhysRevLett.57.2442

8. Bruno P., Chappert C. Oscillatory Coupling between Ferromagnetic Layers Separated by a Nonmagnetic Metal Spacer. Phys. Rev. Lett. 1991, vol. 67, iss. 12, pp. 1602-1605. doi: 10.1103/PhysRevLett.67.1602

9. Bruno P., Chappert C. Ruderman-Kittel Theory of Oscillatory Interlayer Exchange Coupling. Phys. Rev. B. 1992, vol. 46, iss. 1, pp. 261-270. doi: 10.1103/PhysRevB.46.261

10. Julliere M. Tunneling Between Ferromagnetic Films. Phys. Lett. A. 1975, vol. 54, iss. 3, pp. 225-226. doi: 10.1016/0375-9601 (75)90174-7

11. Moodera J. S., Kinder L. R., Wong T. M., Meservey R. Large Magnetoresistance at Room Temperature in Ferromagnetic Thin Film Tunnel Junctions. Phys. Rev. Lett. 1995, vol. 74, iss. 16, pp. 3273-3276. doi: 10.1103/PhysRevLett.74.3273

12. Miyazaki T., Tezuka N. Giant Magnetic Tunneling Effect in Fe/AlzO3/Fe Junction. J. of Magnetism and Magnetic Materials. 1995, vol. 139, iss. 3, pp. L231-L234. doi: 10.1016/0304-8853(95)90001 -2

13. Lee Y. M., Hayakawa J., Ikeda S., Matsukura F., Ohno H. Effect of Electrode Composition on the Tunnel Magnetoresistance of Pseudo-Spin-Valve Magnetic Tunnel Junction with a MgO Tunnel Barrier. Appl. Phys. Lett. 2007, vol. 90, iss. 21, pp. 212507-212510. doi: 10.1063/1.2742576

14. Slonczewski J. C. Current-Driven Excitation of Magnetic Multilayers. J. of Magnetism and Magnetic Materials. 1996, vol. 159, iss. 1-2, pp. L1-L7. doi: 10.1016/0304-8853(96)00062-5

15. Berger L. Emission of Spin Waves by a Magnetic Multilayer Traversed by a Current. Phys. Rev. B. 1996, vol. 54, iss. 13, pp. 9353-9358. doi: 10.1103/PhysRevB.54.9353

16. Tsoi M., Jansen A. G. M., Bass J., Chiang W.-C., Seck M., Tsoi V., Wyder P. Excitation of a Magnetic Multilayer by an Electric Current. Phys. Rev. Lett. 1998, vol. 80, iss. 19, pp. 4281-4284. doi: 10.1103/PhysRevLett.80.4281

17. Rippard W. H., Pufall M. R., Kaka S., Russek S. E., Silva T. J. Direct-Current Induced Dynamics in Co90Fe10/Ni80Fe20 Point Contacts. Phys. Rev. Lett. 2004, vol. 92, iss. 2, 027201. doi: 10.1103/PhysRevLett.92.027201

18. Bonetti S., Muduli P., Mancoff F., Akerman J. Spin Torque Oscillator Frequency Versus Magnetic Field Angle: the Prospect of Operation Beyond 65 GHz. Appl. Phys. Lett. 2009, vol. 94, iss. 10, p. 102507. doi: 10.1063/1.3097238

19. Myers E. B., Ralph D. C., Katine J. A., Louie R. N., Buhrman R. A. Current-Induced Switching of Domains in Magnetic Multilayer Devices. Science. 1999, vol. 285, iss. 5429, pp. 867-870. doi: 10.1126/science.285.5429.867

20. Katine J. A., Albert F. J., Buhrman R. A., Myers E. B., Ralph D. C. Current-Driven Magnetization Reversal and Spin-Wave Excitations in Co/Cu/Co Pillars. Phys. Rev. Lett. 2000, vol. 84, iss. 14, pp. 3149-3152. doi: 10.1103/PhysRevLett.84.3149

21. Parkin S. S. P., Hayashi M., Thomas L. Magnetic Domain-Wall Racetrack Memory. Science. 2008, vol. 320, iss. 5873, pp. 190-194. doi: 10.1126/science.1145799

22. Lavrijsen R., Lee J.-H., Fernandez-Pacheco A., Petit D. C. M. C., Mansell R., Cowburn R. P. Magnetic Ratchet for Three-Dimensional Spintronic Memory and Logic. Nature. 2013, vol. 493, iss. 7434, pp. 647-650. doi: 10.1038/nature11733

23. Dyakonov M. I., Perel V. I. Possibility of Orientating Electron Spins with Current. JETP Lett. 1971, vol. 13, iss. 11, pp. 467-469.

24. Dyakonov M. I., Perel V. I. Current-Induced Spin Orientation of Electrons in Semiconductors. Phys. Lett. A. 1971, vol. 35, iss. 6, pp. 459-460. doi: 10.1016/0375-9601(71)90196-4

25. Hirsch J. E. Spin Hall Effect. Phys. Rev. Lett. 1999, vol. 83, iss. 9, pp. 1834-1837. doi: 10.1103/PhysRevLett.83.1834

26. Emori S., Bauer U., Sung-Min Ahn, Martinez E., Beach G. S. D. Current-Driven Dynamics of Chiral Ferromagnetic Domain Walls. Nature Materials. 2013, vol. 12, iss. 7, pp. 611-616. doi: 10.1038/nmat3675

27. Qiu Xuepeng, Narayanapillai K., Wu Yang, Deorani P., Yang Dong-Hyuk, Noh Woo-Suk, Park Jae-Hoon, Lee Kyung-Jin, Lee Hyun-Woo, Yang Hyunsoo. Spin-Orbit-Torque Engineering via Oxygen Manipulation. Nature Nanotechnology. 2015, vol. 10, iss. 4, pp.333-338. doi: 10.1038/NNANO.2015.18

28. Kim Gyu Won, Samardak A. S., Kim Yong Jin, Cha In Ho, Ognev A. V., Sadovnikov A. V., Nikitov S. A., Kim Young Keun. Role of the Heavy Metal's Crystal Phase in Oscillations of Perpendicular Magnetic Anisotropy and the Interfacial Dzyaloshinskii-Moriya Interaction in W/Co-Fe-B/MgO Films. Physical Review Applied. 2018, vol. 9, iss. 6, art. no. 064005. doi: 10.1103/PhysRevApplied.9.064005

29. Datta S., Das B. Electronic Analog of the ElectroOptic Modulator. Appl. Phys. Lett. 1990, vol. 56, iss. 7, pp. 665-667. doi: 10.1063/1.102730

30. Dzyaloshinskii I. E. Thermodynamic Theory of "Weak" Ferromagnetism in Antiferromagnetic Substances. JETP. 1957, vol. 5, no. 6, p. 1259.

31. Moriya T. New Mechanism of Anisotropic Superexchange Interaction. Phys. Rev. Lett. 1960, vol. 4, iss. 5, pp. 228-230. doi: 10.1103/PhysRevLett.4.228

32. Fert A. Magnetic and Transport Properties of Metallic Multilayers. Materials Science Forum. 1990, vols. 5960, pp 439-480. doi: 10.4028/www.scientific.net/MSF.59-60.439

33. Stashkevich A. A., Belmeguenai M., Roussigne Y., Cherif S. M., Kostylev M., Gabor M., Lacour D., Tiusan C., Hehn M. Experimental Study of Spin-Wave Dispersion in Py/Pt Film Structures in the Presence of an Interface Dzyaloshinskii-Moriya interaction. Phys. Rev. B. 2015, vol. 91, iss. 21,214409. doi: 10.1103/PhysRevB.91.214409

34. Nembach H. T., Shaw J. M., Weiler M., Jue E., Silva T. J. Linear Relation between Heisenberg Exchange and Interfacial Dzyaloshinskii-Moriya Interaction in Metal Films. Nature Physics. 2015, vol. 11, iss. 10, pp. 825-829. doi: 10.1038/nphys3418

35. Belmeguenai M., Adam J.-P., Roussigne Y., Eimer S., Devolder T., Kim Joo-Von, Cherif S. M., Stashkevich A., Thiaville A. Interfacial Dzyaloshinskii-Moriya Interaction in Perpendicularly Magnetized Pt/Co/AlOx Ultrathin Films Measured by Brillouin Light Spectroscopy. Phys. Rev. B. 2015, vol. 91, iss. 18, 180405(R). doi: 10.1103/PhysRevB.91.180405

36. Belmeguenai M., Gabor M. S., Roussigne Y., Stashkevich A., Cherif S. M., Zighem F., Tiusan C. Brillouin Light Scattering Investigation of the Thickness Dependence of Dzyaloshinskii-Moriya Interaction in Co0.5Fe0.5 Ultrathin Films. Phys. Rev. B. 2016, vol. 93, iss. 17, 174407. doi: 10.1103/PhysRevB.93.174407

37. Srivastava T., Schott M., Juge R., Krizakov V., Belmeguenai M., Roussigne Y., Bernand-Mantel A., Ranno L., Pizzini S., Cherif S.-M., Stashkevich A., Auffret S., Boulle O., Gaudin G., Chshiev M., Baraduc C., Bea H. Large-Voltage Tuning of Dzyaloshinskii-Moriya Interactions: A Route toward Dynamic Control of Skyrmion Chirality. Nano Lett. 2018, vol. 18, iss. 8, pp. 4871-4877. doi: 10.1021/acs.nanolett.8b01502

38. Kim Kyoung-Whan, Lee Hyun-Woo, Lee Kyung-Jin, Stiles M. D. Chirality from Interfacial Spin-Orbit Coupling Effects in Magnetic Bilayers. Phys. Rhys. Lett. 2013, vol. 111, iss. 21, 216601. doi: 10.1103/PhysRevLett.111.216601

39. Ryu K.-S., Thomas L., Yang S.-H., Parkin S. Chiral Spin Torque at Magnetic Domain Walls. Nat. Nanotech. 2013, vol. 8, iss. 7, pp. 527-533. doi: 10.1038/ nnano.2013.102

40. Caretta L., Mann M., BGttner F., Ueda K., Pfau B., GGnther C. M., Hessing P., Churikova A., Klose C., Schneider M., Engel D., Marcus C., Bono D., Bagschik K., Eisebitt S., Beach G. S. D. Fast Current-Driven Domain Walls and Small Skyrmions in a Compensated Ferrimagnet. Nature Nanotech. 2018, vol. 13, iss. 12, pp. 1154-1160. doi: 10.1038/s41565-018-0255-3

41. de Leeuw F. H. Physical Principles of Magnetic Bubble Domain Memory Devices. Ed. by W. E. Proebster. Digital Memory and Storage. Vieweg, 1978, pp. 203-215.

42. Fert A., Cros V., Sampaio J. Skyrmions on the Track. Nature Nanotech. 2013, vol. 8, iss. 3, pp. 152-156. doi: 10.1038/nnano.2013.29

43. Boulle O., Vogel J., Yang H., Pizzini S., Chaves D. de Souza, Locatelli A., Mente? T. Onur, Sala A., Buda-Prejbeanu L. D., Klein O., Belmeguenai M., Roussigne Y., Stashkevich A., Cherif S.-M., Aballe L., Foerster M., Chshiev M., Auffret S., Miron I. M., Gaudin G. Room-Temperature Chiral Magnetic Skyrmions in Ultrathin Magnetic Nanostructures. Nature Nanotech. 2016, vol. 11, iss. 5, pp. 449-454. doi: 10.1038/nnano.2015.315

44. Soumyanarayanan A., Raju M., Gonzalez Oyarce A. L., Tan Anthony K. C., Im Mi-Young, Petrovic A. P., Khoo Ho K. H., Tran M., Gan C. K., Ernult F., Panagopoulos C. Tunable Room-Temperature Magnetic Skyrmions in Ir/Fe/Co/Pt Multilayers. Nature Materials. 2017, vol. 16, iss. 9, pp. 898-904. doi: 10.1038/nmat4934

45. Woo S., Litzius K., KrGger B., Im Mi-Young, Caretta L., Richter K., Mann M., Krone A., Reeve R. M., Weigand M., Agrawal P., Lemesh I., Mawass M.-A., Fischer P., Klaui M., Beach G. S. D. Observation of Room-Temperature Magnetic Skyrmions And Their Current-Driven Dynamics in Ultrathin Metallic Ferromagnets. Nature Materials. 2016, vol. 15, iss. 5, pp. 501-506. doi: 10.1038/nmat4593


Для цитирования:


Stashkevich A.А. Spin-Orbitronics a Novel Trend in Spin Oriented Electronics. Известия высших учебных заведений России. Радиоэлектроника. 2019;22(6):45-54. https://doi.org/10.32603/1993-8985-2019-22-6-45-54

For citation:


Stashkevich A.A. Spin-Orbitronics a Novel Trend in Spin Oriented Electronics. Journal of the Russian Universities. Radioelectronics. 2019;22(6):45-54. https://doi.org/10.32603/1993-8985-2019-22-6-45-54

Просмотров: 34


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1993-8985 (Print)
ISSN 2658-4794 (Online)