Determination of Ethanol Content in Fuels with Phononic Crystal Sensor
https://doi.org/10.32603/1993-8985-2019-22-5-107-115
Аннотация
Introduction. In-line analysis of ethanol content in gasoline blends is currently one of the urgent needs of fuel industry. Developing safe and secure approaches is critical for real applications. A phononic crystal sensor have been introduced as an innovative approach to high performance gasoline sensing. Distinguishing feature of proposed sensor is the absence of any electrical contact with analysed gasoline blend, which allows the use of sensors directly in pipelines without the risk of explosion in an emergency.
Aim. Investigation of the possibilities of using phononic sensor structures to determine the ethanol content in liquid hydrocarbons.
Materials and methods. A theoretical analysis of sensor structure was carried out on the basis of numerical simulation using COMSOL Multiphysics software. For measurement, substances of ordinary gasoline and gasoline 63–80 with ethanol concentrations in the range of 1–10 % by volume in increments of 2 % were prepared. The phononic crystal sensor was designed as a stainless steel plate with cylindrical holes and a resonant cavity, formed as a running across the wave propagation path slit between two lattices.
Results. In-line analysis of measuring the concentration of ethanol in alcohol-containing fuels on a phononic crystal structure with a resonant cavity was carried out. Using the Agilent4395A admittance meter, the transmission spectra of longitudinal acoustic waves through the gasoline-filled sensor structure with were obtained. The non-linear correlation between the composition and the speed of sound of the blend is presented in the article is due to the ability to reduce the speed of sound of the mixture with an increase in ethanol concentration in the range of 0–10 % by volume.
Conclusion. A measurement structure on the basis of phononic crystal was created. The measurements of various gasoline-ethanol mixtures show that the sensor has significant sensitivity (0.91 kHz/ms−1 ) with quality factor of 200) to distinguish between regular fuels, gasoline based blends and the presence of additives in standard fuels. The sensor has prospects for in-line analyzes the composition of liquid hydrocarbons.
Ключевые слова
Об авторах
N. V. MukhinГермания
Nikolay V. Mukhin, Ph.D. (Eng.) (2013), Researcher of Department of Sensorics of Institute of Micro and Sensor Systems (IMOS), Otto-von-Guericke-University Magdeburg, Germany. The author of more than 50 scientific publications. Area of expertise: study of thin-film ferroelectrics; the development of acoustic metamaterials and sensors.
Universitaetsplatz 2, Magdeburg 39106, Germany
A. Oseev
Франция
Oseev Aleksandr, Ph.D. (2017), he is working in FEMTO-ST Institute, Université de Bourgogne FrancheComté. The author of 28 scientific publications. Area of expertise: fluidic sensors, more specifically, phononic crystal based sensors, microacoustic sensors, microfluidic sensor platforms.
15B Av. des Montboucons, Besançon 25030, France
M. M. Kutia
Германия
Mykhailo M. Kutia, post-graduate student of Otto-von-Guericke-University Magdeburg, Germany since 2016. The author of 12 scientific publications. Area of expertise: modeling of fluid filtration in underground reservoirs and creation of sensory systems for online determination of physical properties of mixtures of hydrocarbons.
Universitaetsplatz 2, Magdeburg 39106, Germany
E. S. Borodacheva
Германия
Ekaterina S. Borodacheva, Master student of Otto-von-Guericke-University Magdeburg, Germany. The author of 2 scientific publications. Area of expertise: optimization, study of phononic sensors.
Universitaetsplatz 2, Magdeburg 39106, Germany
P. G. Korolev
Россия
Pavel G. Korolev, Cand. Sci. (Eng.), Associate Professor of the Department of Information-Measuring Systems and Technologies of Saint Petersburg Electrotechnical University. The author of 14 scientific publications. Area of expertise: metrological serviceability of information-measuring systems.
5 Professor Popov Str., St Petersburg 197376, Russia
Список литературы
1. Costa R. C., Sodré J. R. Hydrous Ethanol vs. Gasoline-Ethanol Blend: Engine Performance and Emissions. Fuel. 2010, vol. 89, iss. 2, pp. 287–293. doi: 10.1016/j.fuel.2009.06.017
2. Rasskazchikova T. V., Kapustin V. M., Karpov S. A. Ethanol as High–Octane Additive to Automotive Gasolines. Production and Use in Russia and Abroad. Chemistry and Technology of Fuels and Oils. 2004, vol. 40, iss. 4, pp. 203–210. doi: 10.1023/B:CAFO.0000041215.14876.ce
3. Celik M. B. Experimental Determination of Suitable Ethanol–Gasoline Blend Rate at High Compression Ratio for Gasoline Engine. Applied Thermal Engineering. 2008, vol. 28, iss. 5–6, pp. 396–404, doi: 10.1016/j.applthermaleng.2007.10.028
4. Delgado R. C. O. B., Araujo A. S., Fernandes V. J. Properties of Brazilian Gasoline Mixed with Hydrated Ethanol for Flex-Fuel Technology. Fuel Processing Technology. 2007, vol. 88, no. 4, pp. 365–368, doi: 10.1016/j.fuproc.2006.10.010
5. Machado G. B., Barros J. E. M., Braga S. L., Braga C. V. M., Oliveira E. J. de, da Silva A. H. M. d. F. T., Carvalho L. d. O. Investigations on Surrogate Fuels for High-Octane Oxygenated Gasolines. Fuel. 2011, vol. 90, iss. 2, pp. 640–646. doi: 10.1016/j.fuel.2010.10.024
6. Melo T. C. C. d., Machado G. B., Belchior C. R. P., Colaço M. J., Barros J. E. M., Oliveira E. J. de, Oliveira D. G. de. Hydrous Ethanol–Gasoline Blends – Combustion and Emission Investigations on a Flex-Fuel Engine. Fuel. 2012, vol. 97, pp. 796–804. doi: 10.1016/j.fuel.2012.03.018
7. Ozcan M., Akman S. Determination of Cu, Co and Pb in Gasoline by Electrothermal Atomic Absorption Spectrometry Using Aqueous Standard Addition in Gasoline–Ethanol–Water Three-Component System. Spectrochimica Acta, Pt. B: Atomic Spectroscopy. 2005, vol. 60, iss. 3, pp. 399–402. doi: 10.1016/j.sab.2004.12.001
8. Prasad P. R., Rama Rao K. S., Bhuvaneswari K., Praveena N., Srikanth Y. V. V. Determination of Ethanol in Blend Petrol by Gas Chromatography and Fourier Transform Infrared Spectroscopy. Energy Sources, Pt. A: Recovery, Utilization, and Environmental Effects. 2008, vol. 30, iss. 16. pp. 1534–1539. doi: 10.1080/15567030701258444
9. Sastry G. S., Prasad P. R., Bhuvaneswari K. Determination of Alcohol in Petrol-Alcohol Mixtures. Indian Journal of Chemical Technology. 2004, vol. 11, pp. 323–325.
10. Pereira P. F., Marra M. C., Munoz R. A. A., Richter E. M. Fast Batch Injection Analysis System for on-Site Determination of Ethanol in Gasohol and Fuel Ethanol. Talanta, 2012, vol. 90, pp. 99–102. doi: 10.1016/j.talanta.2012.01.004
11. Mendes G., Aleme H. G., Barbeira P. J. S. Determination of Octane Numbers in Gasoline by Distillation Curves and Partial Least Squares Regression. Fuel, 2012, vol. 97, pp. 131–136. doi: 10.1016/j.fuel.2012.01.058
12. Lucklum R., Ke M., Zubtsov M. Two-Dimensional Phononic Crystal Sensor Based on a Cavity Mode. Sensors and Actuators B: Chemical. 2012, vol. 171–172, pp. 271–277. doi:10.1016/j.snb.2012.03.063
13. Oseev A., Zubtsov M., Lucklum R. Gasoline Properties Determination with Phononic Crystal Cavity Sensor. Sensors and Actuators B: Chemical. 2013, vol. 189, pp. 208–212. doi: 10.1016/j.snb.2013.03.072
14. Zubtsov M., Lucklum R., Ke M., Oseev A., Grundmann R., Henning B., Hempel U. 2D Phononic Crystal Sensor with Normal Incidence of Sound. Sensors and Actuators A: Physical. 2012, vol. 186, pp. 118–124. doi: 10.1016/j.sna.2012.03.017
15. Schmidt M.-P., Oseev A., Engel C., Brose A., Schmidt B., Hirsch S. Flexible Free-Standing SU-8 Microfluidic Impedance Spectroscopy Sensor for 3-D Molded Interconnect Devices Application. J. Sens. Sens. Syst. 2016, vol. 5, pp. 55–61. doi: 10.5194/jsss-5-55-2016
16. Schmidt M.-P., Oseev A., Lucklum R., Zubtsov M., Hirsch S. SAW Based Phononic Crystal Sensor, Technological Challenges and Solutions. Microsyst Technol. 2016, vol. 22, pp. 1593–1599. doi: 10.1007/s00542-015-2781-3
17. Luning Prak D. J., Morris R. E., Cowart J. S., Hamilton L. J., Trulove P. C. Density, Viscosity, Speed of Sound, Bulk Modulus, Surface Tension, and Flash Point of Direct Sugar to Hydrocarbon Diesel (DSH-76) and Binary Mixtures of NHexadecane and 2,2,4,6,6-Pentamethylheptane. J. Chem. Eng. Data. 2013, vol. 58, pp. 3536–3544. doi: 10.1021/je400839x
18. Schmidt M.-P., Oseev A., Engel C., Brose A., Aman A., Hirsch S. A Novel Design and Fabrication of Multichannel Microfluidic Impedance Spectroscopy Sensor for Intensive Electromagnetic Environment Application. Procedia Engineering. 2014, vol. 87, pp. 88–91. doi: 10.1016/j.proeng.2014.11.272
19. Sharma R. K., Gupta A. K. Detection/Estimation of Adulteration in Gasoline and Diesel Using Ultrasonics. In 2007 Intern. Conf. on Industrial and Information Systems. Peradeniya, Sri Lanka, 09–11 Aug. 2007. Piscataway, IEEE, 2007, pp 509–512. doi: 10.1109/ICIINFS.2007.4579230
20. Wang Z N. A. Ultrasonic Velocities in Pure Hydrocarbons and Mixtures. The Journal of the Acoustical Society of America. 1991, vol. 89 (6), pp. 2725–2730.
21. Berryman J. G. Analysis of Ultrasonic Velocities in Hydrocarbon Mixtures. The Journal of the Acoustical Society of America. 1993, vol. 93 (5). doi: 10.1121/1.405865
22. Schmelzer C. E. H., Żwirbla W., Rosenfeld E., Linde B. B. J. Acoustic Investigations of Pseudo-Stable Structures in Aqueous Solutions of Polyethylene Glycols. Journal of Molecular Structure. 2004, vol. 699, pp. 47–51. doi: 10.1016/j.molstruc.2004.04.027
23. French R., Malone P. Phase Equilibria of Ethanol Fuel Blends. Fluid Phase Equilibria. 2005, vol. 228–229, pp. 27–40. doi:10.1016/j.fluid.2004.09.012
24. Dharmalingam K., Ramachandran K., Sivagurunathan P. Hydrogen bonding interaction between ethyl methacrylate and alcohols in non-polar solvents: An FTIR study. Main Group Chemistry. 2005, no. 4, pp. 241–246. doi:10.1080/10241220600649745.
25. Tôrres R. B., Marchiore A. C. M., Volpe P. L. O. Volumetric Properties of Binary Mixtures of (water+organic solvents) at Temperatures between T=288.15 K and T=303.15 K at p=0.1 MPa. The Journal of Chemical Thermodynamics. 2006, vol. 38, pp. 526–541. doi: 10.1016/j.jct.2005.07.012
26. Mmereki B. T., Oathotse I., Ddamba W. A. A. Ultrasonic Speeds and Isentropic Compressibilities of {difurylmethane+(C1–C6) n-alkanol} Binary Mixtures at T=298.15 K. The Journal of Chemical Thermodynamics. 2010, vol. 42, pp. 1346–1351. doi: 10.1016/j.jct.2010.05.016
27. Gliński J. Determination of the Conditional Association Constants from the Sound Velocity Data in Binary Liquid Mixtures. The Journal of Chemical Physics. 2003, vol. 118, pp. 2301–2307. doi: 10.1063/1.1534579
28. Shukla R. K., Dixit S. N., Jain P., Mishra P., Sharma S. Ultrasonic Velocity and Isentropic Compressibility of Binary Fluid Mixtures at 298.15 K. Orbital. 2010, vol. 2, no. 4.
29. Sarkar L., Roy M. N. Studies on Liquid–Liquid Interactions of Some Ternary Mixtures by Density, Viscosity, Ultrasonic Speed and Refractive Index Measurements. Thermochimica Acta. 2009, vol. 496, pp. 124–128. doi: 10.1016/j.tca.2009.07.011
30. Aliotta F., Gapiński J., Pochylski M., Ponterio R. C., Saija F., Salvato G. Excess Compressibility in Binary Liquid Mixtures. The Journal of Chemical Physics. 2007, vol. 126, 224508. doi: 10.1063/1.2745292
31. Chechko V. E., Lokotosh T. V., Malomuzh N. P., Zaremba V. G., Gotsul'Sky V. Y. Clusterization and Anomalies of Fluctuations in Water-Alcohol Solutions of Low Concentrations. Journal of Physical Studies. 2003, vol. 7, pp. 175–183.
32. Allison S. K., Fox J. P., Hargreaves R., Bates S. P. Clustering and Microimmiscibility in Alcohol-Water Mixtures: Evidence from Molecular-Dynamics Simulations. Phys. Rev. B. 2005, vol. 71. doi: 10.1103/PhysRevB.71.024201
Рецензия
Для цитирования:
Mukhin N.V., Oseev A., Kutia M.M., Borodacheva E.S., Korolev P.G. Determination of Ethanol Content in Fuels with Phononic Crystal Sensor. Известия высших учебных заведений России. Радиоэлектроника. 2019;22(5):107-115. https://doi.org/10.32603/1993-8985-2019-22-5-107-115
For citation:
Mukhin N.V., Oseev A., Kutia M.M., Borodacheva E.S., Korolev P.G. Determination of Ethanol Content in Fuels with Phononic Crystal Sensor. Journal of the Russian Universities. Radioelectronics. 2019;22(5):107-115. https://doi.org/10.32603/1993-8985-2019-22-5-107-115