Preview

Известия высших учебных заведений России. Радиоэлектроника

Расширенный поиск

From Gas Sensors to Detection of Etanol Vapour to Sensor of Bacteria Detection

https://doi.org/10.32603/1993-8985-2019-22-5-93-106

Полный текст:

Аннотация

Introduction. Metal oxide semiconductor sensors have many advantages. But their working temperature is still high and their sensitivities are frequently low. In the current work, I present the results from investigation of sensing ability of new kind of potentiometric solid state gas sensor.

Aim. The main goal of this work is investigation of the temperature dependence in the flow of air and in ethanol vapour mixture of the investigated junction structures. Also, we investigated at fixed temperature the dependence of the thermoelectric force from the ethanol vapour concentration at possible low operation temperature. For the structure, which shows the lowest operation temperature to ethanol vapour, we investigate the ability to detect Pseudomonas putida suspension.

Materials and methods. In this work, the sensitivity to ethanol vapour and Pseudomonas putida suspension were investigated by measuring the thermoelectric force (the voltage) appearing of the structures by standart voltmeters.

Results. Two experimental installations for sensors have been developed. The first one is for detection of ethanol vapour by ZnO/ZnO:Cu, ZnO/ZnO:CuO, ZnO/ZnO:Fe junction structures. The second installation was for Pseudomonas putida suspension detection in gas phase by ZnO/ZnO:Fe junction structure. We discovered that ZnO/ZnO:Fe structure, has the lowest operation temperature of 200 °C to ethanol vapour. For this structure, the potential difference has a negative value and decreases with increasing the amount of the pulverized bacteria.

Conclusion. We discovered that ZnO/ZnO:Fe structure, has the lowest operation temperature of 200 °C. This operation temperature is a bit higher than operation temperature of at which some very novel sensing structures shows the maximum sensitivity.

Об авторе

Dimitre Tz. Dimitrov
Sofia University St. Kliment Ohridski
Болгария

Dimitre Tz. Dimitrov, PhD (Eng.) (1998), Associate Professor of the Department of Inorganic Chemistry at the Sofia University St. Kliment Ohridski, Bulgaria and head of the Laboratory of Nanoparticle Science and Technology there. He is the author of 53 scientific publications. Area of expertise: photocatalysis; sensors and biosensors.

15 Tsar Osvoboditel Blvd., Sofia 1504, Bulgaria



Список литературы

1. Wolkenstein F. F. Electronic Processes at the Surface of SemiconductorsDuring the Chemosorptions. 1st ed. Moscow, Nauka, 1987, 432 p. (In Russ.)

2. Xu J., Han J., Zhang Y., Sun Y., Xie B. Studies on Alcohol Sensing Mechanism of ZnO Based Gas Sensors. Sens. Actuators B. 2008, vol. 132(1), pp. 334–339. doi: 10.1016/j.snb.2008.01.062

3. Comini E. Metal Oxide Nano-Crystals for Gas Sensing. Anal. Chim. Acta. 2006, vol. 568 (1–2), pp. 28–40. doi: 10.1016/j.aca.2005.10.069

4. Paraguay D. F., Miki-Yoshida M., Morales J., Solis J., Estrada L.W. Influence of Al, In Cu, Fe and Sn Dopants on the Response of Thin Film ZnO Gas Sensor to Ethanol Vapour. Thin Solid Films. 2000, vol. 373, pp. 137–140. doi: 10.1016/S0040-6090(00)01120-2

5. Stambolova I., Konstantinov K., Vassilev S., Peshev P., Tsacheva T. Lanthanumdoped SnO2 and ZnO Thin Films Sensitive to Ethanol and Humidity. Mater.Chem. Phys. 2000, vol. 63 (2), pp. 104–108. doi: 10.1016/S0254-0584(99)00193-5

6. Dimitrov D. Tz., Nikolaev N. K., Papazova K. I., Krasteva L. K., Pronin I. A., Averin I. A., Bojinova A. S., Georgieva A. Ts., Yakushova N. D., Peshkova T. V., Karmanov A. A., Kaneva N. V., Moshnikov V. A. Investigation of the Electrical and Ethanol-Vapour Sensing Properties of the Junctions Based on ZnO Nanostructured Thin Film Doped with Copper. Appl. Surf. Sci. 2017, vol. 392, pp. 95–108. doi: 10.1016/j.apsusc.2016.08.049

7. Peshkova T. V., Dimitrov D. Ts., Nalimova S. S., Kononova I. E., Nikolaev N. K., Papazova K. I., Bozhinova A. S., Moshnikov V. A., Terukov E. I. Structures of Nanowires with ZnO–ZnO:CuO Junctions for Detecting Ethanol Vapors. Tech. Phys. 2014, vol. 59 (5), pp. 771–776. doi: 10.1134/S1063784214050259

8. Pronin I. A., Dimitrov D. Tz., Krasteva L. K., Papazova K. I., Averin I. A., Chanachev A. S., Bojinova A. S., Georgieva A. Ts., Yakushova N. D., Moshnikov V. A. Theoretical and Experimental Investigations of Ethanol Vapour Sensitive Properties of Junctions Composed from Produced by Sol-Gel Technology Pure and Fe Modified Nanostructured ZnO Thin Films. Sens. Actuators A. 2014, vol. 206, pp. 88–96. doi: 10.1016/j.sna.2013.11.035

9. Kuo G.-H., Wang H. P., Hsu H. H., Wang J., Chiu Y. M., Jou C.-J. G, Hsu T. F., Chen F.-L. Sensing of Ethanol with Nanosize Fe–ZnO Thin Films. J. Nanomater. 2009, vol. 2009, Article ID 316035. doi: 10.1155/2009/316035

10. Nirmala M., Anukalian A. Synthesis and Characterization of Undoped and TM (Co, Mn) Doped ZnO Nanoparticles. Mater. Lett. 2011, vol. 65 (17–18), pp. 2645–2648. doi: 10.1016/j.matlet.2011.06.029

11. Dimitrov D. Tz., Krasteva L. K., Lyutov L. G., Pronin I. A., Ivanova I. A., Kaneva N. V., Papazova K. I., Averin I. A., Bojinova A. S., Yakushova N. D., Georgieva A. Ts., Moshnikov V. A. Experimental Investigation and Modeling of Bio-Sensitive Properties of ZnO/ZnO:Fe Junctions Based on Nanostructured Films Produced by Sol-Gel Technology. Pt. I. Mater. Sci. Technol. 2016, vol. 24 (2), pp. 77–91.

12. Dimitrov D. Tz., Krasteva L. K., Lyutov L. G., Pronin I. A., Ivanova I. A., Kaneva N. V., Papazova K. I., Averin I. A., Bojinova A. S., Yakushova N. D., Georgieva A. Ts., Moshnikov V. A. Experimental Investigation and Modeling of BioSensitive Properties of ZnO/ZnO:Fe Junctions Based on Nanostructured Films Produced by Sol-Gel Technology. Pt. II. Mater. Sci. Technol. 2016, vol. 24 (3), pp. 127–142.

13. Hsueh T.-J, Hsu C.-L. Fabrication of Gas Sensing Devices with ZnO Nanostructure by the Low-Temperature Oxidation of Zinc Particles. Sens. Actuators B. 2008, vol. 131 (2), pp. 572–576. doi: 10.1016/j.snb.2007.12.045

14. Stilbans L. S. Fizika poluprovodnikov [Semiconductor Physics]. 1 st ed. Moscow, Sovetskoe radio, 1967, 451 p. (In Russ.)

15. Kaneva N., Stefanov B., Dimitrov D., Dushkin C. Photocatalytic Degradation of Methylene Blue by ZnO Photocatalyst Doped with Nickel. Ann. Univ. Sofia (Fac. Chim.) 2011, vol. 102/103, pp. 293–304.

16. Takata M., Tsubone D., Yanagida H. Dependence of Electrical Conductivity of ZnO on Degree of Sintering. J. Am. Ceram. Soc. 1976, vol. 59 (1–2), pp. 4–8. doi: 10.1111/j.1151-2916.1976.tb09374.x

17. Gopel W. Solid-State Chemical Sensors: Atomistic Models and Research Trends. 1989, vol. 16 (1–2), pp. 167–193. doi: 10.1016/0250-6874(89)80015-0

18. Dimitrov D. Tz., Anastasova S. Y., Dushkin C. D. Oxygen Sensing Junctions Based on Yttria Stabilized Zirconia with Platinum Nanoparticles. Rev. Sci. Instrum. 2006, vol. 77, pp. 0561081–0561083. doi: 10.1063/1.2202925

19. Ri S., Hamano K., Nakagawa Z. Debye Length and Gas Sensor Mechanism of Undoped and Sm2O3-Doped ZnO Ceramics. Ceram. Soc. Jpn. 1986, vol. 94, pp. 419–424. doi: 10.2109/jcersj1950.94.1088_419


Для цитирования:


Dimitrov D.T. From Gas Sensors to Detection of Etanol Vapour to Sensor of Bacteria Detection. Известия высших учебных заведений России. Радиоэлектроника. 2019;22(5):93-106. https://doi.org/10.32603/1993-8985-2019-22-5-93-106

For citation:


Dimitrov D.T. From Gas Sensors to Detection of Etanol Vapour to Sensor of Bacteria Detection. Journal of the Russian Universities. Radioelectronics. 2019;22(5):93-106. https://doi.org/10.32603/1993-8985-2019-22-5-93-106

Просмотров: 12


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1993-8985 (Print)
ISSN 2658-4794 (Online)