Preview

Известия высших учебных заведений России. Радиоэлектроника

Расширенный поиск

Low Loss Microwave Ceramic and other Microwave Dielectric Materials for Beam Physics Applications

https://doi.org/10.32603/1993-8985-2019-22-4-66-74

Полный текст:

Аннотация

Introduction. Relativistic, high intensity and small emittance electron bunches are the basis of a future linear collider and free electron laser projects. Drive beam generation in a wakefield structure employing for power extraction and acceleration low loss dielectrics like microwave ceramics, fused silica and Chemical Vapor Deposition (CVD) diamond were considered.

Objective. We report here our experimental testing of a ceramic material with extremely low loss tangent at GHz frequency ranges allowing the realization of high efficiency wakefield acceleration. We also present Barium Strontium Titanium oxides (BST) ferroelectric material, which is a critical tuning element of the 400 MHz superconducting radiofrequency (RF) tuner developed and tested by the CERN/Euclid Techlabs collaboration. The materials discussed here also include quartz and CVD diamonds that are capable of supporting the high RF electric fields generated by electron beams or pulsed high power microwaves. These materials have been optimized or specially designed for accelerator applications.

Materials and methods. The ceramic materials for accelerators, commonly used for the dielectric based accelerating structures, have to withstand high gradient accelerating fields, and prevent potential charging by electron beams. Correspondingly, the ceramic materials, fused silica and CVD diamond were tested with high power wakefield accelerating structures at Argonne Wakefield Accelerator of Argonne National Laboratory. Some of the presented here ceramic materials were tested at X-band 11.4 GHz magnicon high power source.

Results. Low loss microwave ceramics, fused silica, and CVD diamonds have been considered as materials for dielectric based accelerating structures to study of the physical limitations encountered driving > 100 MV/m at microwave and ~ GV/m at THz frequencies in a dielectric based wakefield accelerator. Various ceramic compositions were high power and electron beam tested at X-band 11.4 GHz magnicon power source and Argonne Wakefield Accelerator correspondingly. Special attention was paid to the CVD diamond cylindrical Ka-band 35 GHz wakefield structure development. Finally, the dielectric based structure tuning was demonstrated by varying the permittivity of the BST ferroelectric layer by temperature changes and by applying an external direct current electric field across the ferroelectric. This allows us to control the effective dielectric constant of the composite system and therefore, to control the structure frequency during operation. The same type of ferroelectric material was used for the Ferroelectric Fast Reactive tuner (FE-FRT) development. In a world first, CERN has tested the prototype FE-FRT with a superconducting cavity, and frequency tuning has been successfully demonstrated.

Conclusion. Recent results on the development and experimental testing of advanced dielectric materials for accelerator applications are presented. Low loss microwave ceramics, quartz and CVD diamond are considered. We presented our experimental results on wakefield generation in microwave frequency ranges with the dielectric based accelerating structures. Special attention was paid to the experimental results on high power testing at X-band of the externally powered dielectric based components. Finally, we present here first experimental demonstration of ferroelectric tunable microwave ceramic for accelerator application, which includes both tunable dielectric wakefield accelerating structure and ferroelectric based fast high power tuner for superconducting cavities. The experimental results presented here are critical for the advanced dielectric wakefield accelerating structures and other components development intended for the future linear collider projects.

Об авторе

Alexei D. Kanareykin
Euclid Techlabs LLC
Соединённые Штаты Америки
Dr. Sci. (Physics) of St.Petersburg State University (2012), President and CEO of Euclid Techlabs LLC


Список литературы

1. Gai W., Schoessow P., Cole B., Konecny R., Norem J., Rosenzweig J., Simpson J. Experimental Demonstration of Wake-Field Effects in Dielectric Structures. Phys. Rev. Lett. 1988, vol. 61, 2756. doi: 10.1103/PhysRevLett.61.2756

2. Gai W., Conde M., Power J. G., Jing C. Considerations for a Dielectric-based Two-beam-accelerator Linear Collider. Proc. Int. Particle Accelerator Conf. IPAC’10, Kyoto, Japan, 2010, pp. 3428–3430.

3. Gai W. Advanced Accelerating Structures and Their Interaction with Electron Beams. AIP Conf. Proc., American Institute of Physics, New York, 2009, vol.1086, pp. 3–11. doi: 10.1063/1.3080940

4. Conde M. Survey of Advanced Dielectric Wakefield Accelerators. Proc. Part. Accelerator. Conf. PAC’07, Albuquerque, New Mexico, USA. July 2007, pp.1899–1903.

5. Kanareykin A. New Advanced Dielectric Materials for Accelerator Applications. AIP Conf. Proc., American Institute of Physics, New York, 2010, vol. 1299, pp. 286– 291. doi: 10.1063/1.3520329

6. Kanareykin A. Cherenkov radiation and dielectric based accelerating structures: wakefield generation, power extraction and energy transfer efficiency. Journal of Physics: Conf. Series, 2010, vol. 236, p. 012032.

7. Thompson M. C., Badakov H., Rosenzweig J. B., Travis G., Hogan M., Ischebeck R., Kirby N., Siemann R., Walz D., Muggli P., Scott A., Yoder R. Ultra‐High Gradient Dielectric Wakefield Accelerator Experiments. AIP Conf. Proc., American Institute of Physics, New York, 2006, vol. 877, pp.903–909. doi: 10.1063/1.2409232

8. Whittum D. H. Ultimate Gradient in Solid-State Accelerators. Preprint SLAC-PUB-7910, July 1998. Available at: https://www.slac.stanford.edu/pubs/slacpubs/7750/slacpub-7910.pdf (accessed 15.08.2019)

9. Wang C., Yakovlev V. P., Hirshfield J. L. Rectangular Diamond-Lined Accelerator Structure. Proc. Particle Accelerator Conf. PAC’05, 2005, pp.1282–1285. doi: 10.1109/PAC.2005.1590735

10. Schoessow P., Kanareykin A., Gat R. CVD Diamond Dielectric Accelerating Structures. AIP Conf. Proc., American Institute of Physics, New York, 2009, vol. 1086, pp. 398–403. doi: 10.1063/1.3080939

11. Kazakov S., Shchelkunov S., Yakovlev V., Kanareykin A., Nenasheva E., Hirshfield J. L. Fast ferroelectric phase shifters for energy recovery linacs. Physical Review. ST-Accelerator and Beams, 2010, vol.13, 113501. doi: 10.1103/PhysRevSTAB.13.113501

12. Kanareykin A., Jing C., Nenasheva E., Schoessow P., Power J. G., Gai W. Development of a Ferroelectric Based Tunable DLA Structure. AIP Conf. Proc., American Institute of Physics, New York, 2009, vol. 1086, pp. 386– 392. doi: 10.1063/1.3080936

13. Sotnikov G. V., Marshall T. C., Shchelkunov S. V., Didenko A., Hirshfield J. L. Two‐Channel Rectangular Dielectric Wake Field Accelerator Structure Experiment. AIP Conf. Proc., 2009, vol. 1086, p. 415. doi: 10.1063/1.3080943

14. Kanareykin A., Nenasheva E., Kazakov S., Kozyrev A., Tagantsev A., Yakovlev V., Jing C. Ferroelectric Based Technologies for Accelerators. AIP Conf. Proc., American Institute of Physics, New York, 2009, vol.1086, pp. 380–385. doi: 10.1063/1.3080935

15. Gai W., Conde M. E., Konecny R., Power J. G., Schoessow P., Zou P. RF power generation and coupling measurements for the dielectric wakefield step-up transformer. AIP Conf. Proc., American Institute of Physics, New York, 1999, vol. 472, pp. 626–634.

16. Gao F., Conde M. E., Gai W., Jing C., Konecny R., Liu W., Power J. G., Wong T., Yusof Z. Design and testing of a 7.8 GHz power extractor using a cylindrical dielectric-loaded waveguide. Physical Review. ST-Accelerator Beams, 2008, vol. 11, p. 041301-1. doi: 10.1103/PhysRevSTAB.11.041301

17. Jing C., Liu W., Gai W., Power J., Wong T. Mode analysis of a multilayered dielectric-loaded accelerating structure. Nuclear Instruments and Methods in Physics Research Section A, 2005, vol. 539, iss. 3, pp.445–454. doi: 10.1016/j.nima.2004.10.030

18. Jing C., Kanareykin A., Kazakov S., Liu W., Nenasheva E., Schoessow P., Gai W. Development of a duallayered dielectric-loaded accelerating structure. Nuclear Instruments and Methods, A, 2008, vol. 594, pp. 132–139.

19. Zou P., Gai W., Konecny R., Kanareykin A., Konecny R., Sun X., Wong T. Construction and Testing of an 11.4 GHz Dielectric Structure Based Traveling Wave Accelerator. Review of Scientific Instruments, 2000, vol. 71, p. 2301. doi: 10.1063/1.1150446

20. Jing C., Kanareykin A., Power J. G., Conde M., Yusof Z., Schoessow P., Gai W. Observation of Enhanced Transformer Ratio in Collinear Wakefield Acceleration. Phys. Rev. Lett., 2007, vol. 98, p.144801. doi: 10.1103/PhysRevLett.98.144801

21. Jing C., Kanareykin A., Schoessow P., Conde M. E., Gai W., Konecny R., Power J. G. The First Experiment of a

22. GHz Dielectric Based Wakefield Power Extractor. Proc. Int. Particle Accelerator Conf. IPAC’10, Kyoto, Japan, 2010, pp. 4434–4436.

23. Yu D., Newsham D., Smirnov A. V., Gai W., Konecny R., Liu W., Braun H., Carron G., Döbert S., Thorndahl L., Wilson I., Wuensch W. Construction and Testing of a 21 GHz Ceramic Based Power Extractor. Proc. Particle. Accelerator Conf. PAC’03, 2003, p. 1156– 1159. doi: 10.1109/PAC.2003.1289637

24. Jing C., Gai W., Power J. G., Konecny R., Liu W., Gold S. H., Kinkead A. K., Tantawi S. G., Dolgashev V., Kanareykin A. Progress Toward Externally Powered XBand Dielectric-Loaded Accelerating Structures. IEEE Trans. Plasma Science, 2010, vol. 38, iss. 6, pp. 1354– 1360. doi: 10.1109/TPS.2009.2036921

25. Jing C., Gai W., Power J. G., Konecny R., Gold S. H., Liu W., Kinkead A. K. High-power RF tests on X-band dielectric-loaded accelerating structures. IEEE Trans. on Plasma Science. 2005, vol. 33, iss. 4, pp. 1155–1160. doi: 10.1109/TPS.2005.851957

26. Power J. G., Conde M. E., Gai W., Konecny R., Schoessow P., Kanareykin A. Measurements of the longitudinal wakefields in a multimode, dielectric wakefield a accelerator driven by a train of electron bunches. Physical Review. ST-Accelerator and Beams. 2000, vol. 3, iss. 10, 101302. doi: 10.1103/PhysRevSTAB.3.101302

27. Shipman N. C., Coly M. R., Ben-Zvi I., Bastard J., Gerigk F., Macpherson A., Stapley N., Nenasheva E., Jing C.-J., Kanareykin A., Kazakov S., Burt G., Castilla A. A Ferroelectric Fast Reactive Tuner for Superconducting Cavities. Proc. of the Superconducting RF Workshop, SRF’2019, 5–9 July 2019, Dresden, Germany.

28. Nenasheva E., Kanareikin A. Low Dielectric Loss Ceramic Ferroelectric Composite Material. 2011. US Patent № 8067324.

29. Nenasheva Е. А., Каnаrеyкin А. D., Каrtenко N. F., Кarmаnеnко S. F. Ceramics Materials Based on (Ba, Sr)TiO3 Solid Solutions for Tunable Microwave Devices. Journal of Electroceramics. 2004, vol. 13, pp. 235–238.

30. Kanareykin A., Kazakov S., Nenasheva E., Tagantsev A., Yakovlev V. P. Tunable Ferroelectric Based Technologies for Accelerator Components. Proc. of European Particle Accelerator Conf. EPAC 2008. Genoa, Italy, 2008, pp. 1646–1648.

31. Yakovlev V. P., Nezhevenko O. A., Hirshfield J. L., Kanareykin A. D. Ferroelectric Switch for an Active RF Pulse Compressor. AIP Conf. Proc. American Institute of Physics, New York, 2003, vol. 691, pp. 187–196. doi: 10.1063/1.1635119

32. Jing C., Kanareykin A., Power J. G., Conde M., Liu W., Antipov S., Schoessow P., Gai W. Experimental Demonstration of Wakefield Acceleration in a Tunable Dielectric Loaded Accelerating Structure. Phys. Rev. Lett. 2011, vol. 106, pp. 164802. doi: 10.1103/PhysRevLett.106.164802

33. Kazakov S. Yu., Shchelkunov S. V., Yakovlev V. P., Kanareykin A., Nenasheva E., Hirshfield J. L., Khabiboulline T., Hahn H., Choi E. M. Fast High‐Power Microwave Ferroelectric Phase Shifters for Accelerator Application. AIP Conf. Proc. American Institute of Physics, New York, 2009, vol. 1086, pp. 477–484. doi: 10.1063/1.3080953

34. Nenasheva E. A., Kartenko N. F., Gaidamaka I. M., Trubitsyna O. N., Kanareykin A. D. Low loss Microwave Ferroelectric Ceramics for High Power Tunable Devices. Journal of European Ceramic Society. 2010, vol. 30, pp. 395–400. doi: 10.1016/j.jeurceramsoc.2009.04.008

35. Kozyrev A. B., Kanareykin A. D., Nenasheva E. A., Osadchy V. N., Kosmin D. M. Observation of an anomalous correlation between permittivity and tunability of a doped (Ba,Sr)TiO3 ferroelectric ceramic developed for microwave applications. Applied Physics Letters. 2009, vol. 95, iss. 1, pp. 012908–012910. doi: 10.1063/1.3168650

36. Kanareykin A., Kazakov S., Kozyrev A. B., Nenasheva E., Yakovlev V. P. Observation of an Anomalous Tuning Range of a Doped BST Ferroelectric Material Developed for Accelerator Applications. Proc. of Int. Particle Accelerator Conf. IPAC 2010, Kyoto, Japan, 2010, pp. 3987–3989.


Для цитирования:


Kanareykin A.D. Low Loss Microwave Ceramic and other Microwave Dielectric Materials for Beam Physics Applications. Известия высших учебных заведений России. Радиоэлектроника. 2019;22(4):66-74. https://doi.org/10.32603/1993-8985-2019-22-4-66-74

For citation:


Kanareykin A.D. Low Loss Microwave Ceramic and other Microwave Dielectric Materials for Beam Physics Applications. Journal of the Russian Universities. Radioelectronics. 2019;22(4):66-74. https://doi.org/10.32603/1993-8985-2019-22-4-66-74

Просмотров: 20


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1993-8985 (Print)
ISSN 2658-4794 (Online)