Preview

Journal of the Russian Universities. Radioelectronics

Advanced search

Design of Wideband Waveguide-to-Microstrip Transition for 60 GHz Frequency Band

https://doi.org/10.32603/1993-8985-2019-22-4-31-44

Abstract

Introduction. The frequency band around 60 GHz is one of the most promising to realize new generation communication systems with high data rate due to the utilization of a wide operational frequency band that significantly exceeds traditional frequency bands below 6 GHz. High interest in the development of 60 GHz communication systems is related to the recent evolution of MMIC technology that allows creating effective components for this band and the variety of planar devices. Both are typically realized on printed circuit boards and have interfaces that are based on microstrip lines. The wideband waveguide-to-microstrip transition is required to test various active and passive planar devices with microstrip interfaces in order to provide an effective interconnection between the standard waveguide interface of measurement equipment and planar microstrip structures.

Objective. The paper deals with the design of planar wideband waveguide-to-microstrip transition with low insertion loss level in the 60 GHz frequency band.

Materials and methods. The main objective is achieved by analyzing of discontinuities in waveguide-tomicrostrip transition structure and their influence on transition characteristics. The transition characteristics are analyzed using full-wave electromagnetic simulation and confirmed with experimental investigation of designed wideband waveguide-to-microstrip transition samples.

Results. The designed transition is based on an electromagnetic coupling through a slot aperture in a microstrip line ground plane. The transition is performed without using blind vias in its structure that provides low production cost and al-lows integrating the WR-15 rectangular waveguide in a simple manner without any modifications in the waveguide structure. Results of the electromagnetic simulation are confirmed with experimental investigations of the fabricated waveguide-to-microstrip transition samples. The designed transition provides operation in the nominal bandwidth of the WR-15 waveguide, namely, 50…75 GHz with the insertion loss level of 2 dB and with less than 0.8 dB insertion loss level at the 60 GHz frequency.

Conclusion. The designed waveguide-to-microstrip transition can be considered as an effective solution for interconnection between various waveguide and microstrip millimeter-wave devices due to its wideband performance, low insertion loss level, simple integration and robustness to the manufacturing tolerances structure.

About the Authors

Andrei V. Mozharovskiy
LLC "Radio Gigabit"
Russian Federation

Senior microwave systems and antennas engineer 



Aleksey A. Artemenko
LLC "Radio Gigabit"
Russian Federation
Cand. Sci. (Engineering) (2013), R&D director


Roman O. Maslennikov
LLC "Radio Gigabit"
Russian Federation
Cand. Sci. (Phys.-Math.) (2012), CEO


Irina B. Vendik
Saint Petersburg Electrotechnical University "LETI"
Russian Federation
Dr. Sci. (Engineering) (1991), Professor (1993) of the Department of Microradioelectronics and Radio Technology, Head of the Laboratory of Microwave Microelectronics


References

1. 802.11–2016 – IEEE Standard for Information technology – Telecommunications and Information Exchange between Systems Local and Metropolitan Area Networks – Specific requirements. Pt. 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. IEEE Std. 802.11–2016. doi: 10.1109 /IEEESTD.2016.7786995

2. Rappaport T. S., Sun Shu, Mayzus R., Zhao Hang, Azar Y., Wang K., Wong G. N., Schulz J. K., Samimi M., Gutierrez F. Millimeter Wave Mobile Communications for 5G Cellular: It Will Work! IEEE Access (Invited). 2013, vol. 1, no. 1, pp. 335–349. doi: 10.1109 /ACCESS.2013.2260813

3. Stevens M., Grafton G. The Benefits of 60 GHz Unlicensed Wireless Communications. 10 p. Available at: https://www.faltmann.de/pdf/white-paper-benefits-of-60ghz.pdf (accessed 08.07.2019)

4. Decision of the State Committee for Emergencies of 12.12.2011 no. 11-13-06-1. On the use by radio-electronic means of the fixed service of the radio frequency band 57-64 GHz (as amended on March 10, 2017 no. 17-40-03). Available at: http://grfc.ru/upload /medialibrary/713/Reshenie_GKRCH_ot_10.03.2017_17_4 0_03_15.02.2019.docx (accessed 11.07.2019) (In Russ.)

5. Revision of Part 15 of the Commission’s Rules Regarding Operation in the 57–64 GHz Band. Available at: http://fjallfoss.fcc.gov/edocs_public/attachmatch/FCC-13-112A1.pdf (accessed 08.07.2019)

6. ECC Recommendation (09)01. Use of the 57–64 GHz Frequency Band for Point-to-Point Fixed Wireless Systems. Available at: http://www.erodocdb.dk/Docs/doc98/official/pdf /Rec0901.pdf (accessed 08.07.2019)

7. Wells J. Multi-Gigabit Microwave and Millimeter-Wave Wireless Communications. Norwood, Artech House, Inc., 2010, 224 p.

8. Kim K. W., Na C. H., Woo D. S. New Dielectric-Covered Waveguide-to-Microstrip Transitions for Ka-Band Transceivers. IEEE MTT-S Inter. Microwave Symposium. 8–13 June 2003 Philadelphia, PA, USA. Digest. Vol. 2. Piscataway, IEEE, 2003, pp. 1115–1118. doi: 10.1109/MWSYM.2003.1212564

9. Tikhov Y., Moon J.-W., Kim Y.-J., Sinelnikov Y. Refined Characterization of E-plane Waveguide to Microstrip Transition for Millimeter-Wave Applications. Asia-Pacific Microwave Conf. 3–6 Dec. 2000, Sydney, Australia. Piscataway, IEEE, 2000, pp. 1187–1190. doi: 10.1109/APMC.2000.926043

10. Shih Y.-C., Ton T.-N., Bui L. Q. Waveguide-to-Microstrip Transitions for Millimeter-Wave Applications. IEEE MTT-S Inter. Microwave Symp. 25–27 May 1988, New York, USA. Digest. Piscataway, IEEE, 1988, pp. 473– 475. doi: 10.1109/MWSYM.1988.22077

11. Lou Y., Chan C. H., Xue Q. An in-line Waveguideto-Microstrip Transition Using Radial-Shaped Probe. IEEE Antennas and Propagation Society Inter. Symp. 9–15 June 2007, Honolulu, USA. Piscataway, IEEE, 2007, pp. 3117– 3120. doi: 10.1109/APS.2007.4396196

12. Yao H. W., Abdelmonem A., Liang J. F., Zaki K. A. A Full Wave Analysis of Microstrip-to-Waveguide Transitions. IEEE MTT-S Inter. Microwave Symp. 23–27 May 1994, San Diego, USA. Digest, vol. 42, no. 12, pp. 2371– 2380. doi: 10.1109/MWSYM.1994.335341

13. Grabherr W., Huder B., Menzel W. Microstrip to waveguide transition compatible with MM-wave integrated circuits. IEEE Trans. on Microwave Theory and Techniques. 1994, vol. MTT-42, no. 9, pp. 1842–1843. doi: 10.1109/22.310597

14. Hyvonen L., Hujanen A. A Compact MMICCompatible Microstrip to Waveguide Transition. IEEE MTT-S Inter. Microwave Symp. 17–21 June 1996, San Francisco, USA. Digest. Piscataway, IEEE, 1996, pp. 875–878. doi: 10.1109/MWSYM.1996.511077

15. Wang Z., Xia L., Yan B., Xu R., Guo Y. A Novel Waveguide to Microstrip Transition in Millimeter-Wave LTCC Module. IEEE Inter. Symp. on Microwave, Antenna, Propagation, and EMC Technologies for Wireless Communications. 16–17 Aug. 2007, Hangzhou, China. Piscataway, IEEE, 2007, pp. 340–343. doi: 10.1109/MAPE.2007.4393616

16. Xinfeng D. An Integrated Millimeter-Wave Broadband Microstrip-to-Waveguide Vertical Transition Suitable for Multilayer Planar Circuits. IEEE Microwave and Wireless Components Letters. 2016, vol. 26, iss. 11, pp. 897–899. doi: 10.1109/LMWC.2016.2614973

17. Ishikawa Y., Sakakibara K., Suzuki Y., Kikuma N. Millimeter-Wave Topside Waveguide-to-Microstrip Transition in Multilayer Substrate. IEEE Microwave and Wireless Components Letters. 2018, vol. 28, iss. 5, pp. 380–382. doi: 10.1109/LMWC.2018.2812125

18. Lee H. Y., Jun D. S., Moon S. E., Kim E. K., Park J. H., Park K. H. Wideband Aperture Coupled Stacked Patch Type Microstrip to Waveguide Transition for V-Band. IEEE Proc. of Asia-Pacific Microwave Conference, 2006. 12–15 Dec. 2006, Yokohama, Japan. Piscataway, IEEE, 2006, pp. 360–362. doi:

19. 1109/APMC.2006.4429440 19. Artemenko A. A. , Maslennikov R. O., Sevast'yanov A. G. , Ssorin V. N. Volnovodno-mikropoloskovyi perekhod v chastotnom diapazone 60 GGts [Waveguide to microstrip transition in the 60 GHz frequency band]. 19th Intern. Crimean conf. Microwave Engineering and Telecommunication Technologies (KryMiKo'2009). September, 2009. Sevastopol, Veber, 2009, pp. 505–506. (In Russ.)

20. Gupta K. C., Garg R., Bahl I., Bharia P. Microstrip Lines and Slotlines. 2nd ed. Boston/London, Artech House, Inc., 1996, 535 p.

21. Pozar D. M. Microwave Engineering. 4th ed. Hoboken, NJ: John Wiley & Sons, Inc., 2012, 756 p.

22. IEC 60153–2:2016. Hollow Metallic Waveguides. Pt. 2: Relevant Specifications for Ordinary Rectangular Waveguides. Standard of the International Electrotechnical Commission, 2016. Available at: https://webstore. iec.ch/publication/24898 (accessed 08.07.2019)

23. Felbecker R., Keusgen W., Peter M. Estimation of Permittivity and Loss Tangent of High Frequency Materials in the Millimeter Wave Band using a Hemispherical Open Resonator. IEEE Inter. Conf. on Microwaves, Communications, Antennas and Electronics Systems (COMCAS). 7–9 Nov. 2011, Tel Aviv, Israel. Piscataway, IEEE, 2011, pp. 1–8. doi: 10.1109/COMCAS.2011.6105829

24. Horn A. Dielectric Constant and Loss of Selected Grades of Rogers High Frequency Circuit Substrates from 1–50 GHz: Technical Report 5788. Rogers Corporation. Chandler, AZ, 2003, 12 p.


Review

For citations:


Mozharovskiy A.V., Artemenko A.A., Maslennikov R.O., Vendik I.B. Design of Wideband Waveguide-to-Microstrip Transition for 60 GHz Frequency Band. Journal of the Russian Universities. Radioelectronics. 2019;22(4):31-44. https://doi.org/10.32603/1993-8985-2019-22-4-31-44

Views: 1036


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1993-8985 (Print)
ISSN 2658-4794 (Online)