Preview

Journal of the Russian Universities. Radioelectronics

Advanced search

ON USING PERIODIC REFERENCE SIGNAL IN HOMODYNE ACOUSTO-OPTIC SPECTRUM ANALYZER

https://doi.org/10.32603/1993-8985-2019-22-3-97-105

Abstract

Introduction. For a homodyne acousto-optic spectrum analyzer functioning a reference optical channel must be organized. The signal in this channel should provide uniform reference illumination throughout the spatial frequency range. In the general case, the spectrum analyzer functioning can be considered with a continuous photosensor and photosensor with charge accumulation. With the last one, the signal in the reference channel is proposed to be a wideband pulses periodic sequence.
Objective. Analyze the spectrum analyzer functioning with a periodic reference signal.
Materials and methods. We derive the mathematical expression to describe the influence of the reference signal structure on the analyzer’s output signal for the cases of continuous photosensor and photosensor with charge accumulation.
Results. It is shown that in the case of continuous photosensor, the reference signal periodicity does not lead to characteristics degradation. However, in the case of many frequency resolution points it is impractical, since each photodetector signal is parallel, processing is required: filtering, amplification and digitization. In the case of using of the charge accumulation sensor, the discrete frequency grid appears, which means signals omissions in frequency. This can be avoided by choosing the accumulation time equal to the minimum among the values of the acousto-optic modulator time aperture and the reference signal period, which is hard to implement, or still leads to the signal omissions in frequency or time.
Conclusion. To perform a real-time mode in the homodyne acousto-optic spectrum analyzer, the reference signal must be either non-periodic, which raises the question of its synthesis, or a continuous photodiode array should be used.

About the Authors

Leonid A. Aronov
Saint Petersburg Electrotechnical University "LETI"
Russian Federation

Leonid A. Aronov – Master’s Degree in Telecommunications (2006), Senior Lecturer of the Department of Theoretical Bases of Radioengineering of Saint-Petersburg Electrotechnical University "LETI". The author of 21 scientific publications. Area of expertise: optical information processing.

5, Professor Popov Str., 197376, St. Petersburg



Yurii S. Dobrolenskii
Space Research Institute of the Russian Academy of Sciences
Russian Federation

Yurii S. Dobrolenskii Cand. of Sci. (Phys.-Math.) (2008), Senior Researcher of the Space Research Institute of the Russian Academy of Sciences. The author of 60 scientific publications. Area of expertise: acousto-optics; physical optics; radio physics; fluctuation physics; atmospheric physics; space engineering; physics of planets.

84/32, Profsoyuznaya Str., 117997, Moscow



Victor N. Ushakov
Saint Petersburg Electrotechnical University "LETI"
Russian Federation

Victor N. Ushakov – Dr. of Sci. (Engineering) (1992), Professor (1994), Head of the Department of Theoretical Bases of Radioengineering of Saint-Petersburg Electrotechnical University "LETI". The author of more than 200 scientific publications. Area of expertise: optical information processing.

5, Professor Popov Str., 197376, St. Petersburg



References

1. Vander L. A. Optical Signal Processing. N. Y., Wiley Interscience, 2005, 604 p.

2. Wilby W. A., Gatenby P. V. Theoretical Study of the Interferometric Bragg-Cell Spectrum Analyser. IEE Proceedings J – Optoelectronics. 1986, vol. 133, iss. 1, pp. 47–59. doi: 10.1049/ip-j.1986.0007

3. Olbrich M., Mittenzwei V., Siebertz O., Schmulling F., Schieder R. A 3 GHz Instantaneous Bandwidth Acousto-Optical Spectrometer With 1 MHz Resolution. 18th Int. Symp. on Space Terahertz Technology. March, 21–23, 2007, Pasadena, CL, USA, pp. 231–235.

4. Saleh B. E. A., Teich M. C. Fundamentals of Photonics. New York: John Wiley & Sons, 1991, 947 p.

5. Vander L. A. Interferometric Spectrum Analyzer. App. Opt. 1981, vol. 20, no. 16, pp. 2770–2779. doi: 10.1364/AO.20.002770

6. Shah M. L., Young E. H., Vander L. A., Hamilton M. Interferometric Bragg cell spectrum analyzer. 1981 Ultrasonics Symp. 14–16 Oct. 1981, Chicago, IL, USA. Piscataway, IEEE, 1981, pp. 743–746. doi: 10.1109/ULTSYM. 1981.197720

7. Shah M. L., Teague J. R., Belfatto R. V., Thomson D. W., Young E. H. Wideband interferometric acoustooptic Bragg cell spectrum analyser. Proc. Ultrasonics Symp. 14–16 Oct. 1981, Chicago, IL, USA, Piscataway, IEEE, 1981, pp. 740–742. doi: 10.1109/ULTSYM.1981.197719

8. Grachev S. V., Rogov A. N., Ushakov V. N. Homodyne Acousto-Optic Spectrum Analyzer With Spatial and Temporal Integration. Radiotekhnika [Radioengineering]. 2003, iss. 4, pp. 23–28. (In Russ.)

9. Aronov L. A., Ushakov V. N. Homodyne AcoustoOptic Spectrum Analyzer with Chirp Pulse as a Reference Signal. Journal of the Russian Universities. Radioelectronics. 2013, vol. 16, no. 5, pp. 59–65. (In Russ.)

10. Aronov L. A., Ushakov V. N. Homodyne AcoustoOptic Spectrum Analyzer with a Continuous Binary Phase-Shift Keyed Radio Signal as a Reference Signal. Journal of the Russian Universities. Radioelectronics. 2014, vol. 17, no. 6, pp. 13–16. (In Russ.)

11. Acousto-Optic Signal Processing: Theory and Implementation. Ed. by Norman J. Berg, John M. Pelligrino. New York, Marcel Dekker, inc, 1996, 580 p.

12. Balakshii V. I., Parygin V. N., Chirkov L. E. Fizicheskie osnovy akustooptiki [Physical Basics of AcoustoOptics]. Moscow, Radio i svyaz', 1985, 279 p. (In Russ.)

13. Goodman J. W. Introduction to Fourier Optics. New York, McGRAW-Hill, 2017, 456 p.

14. The property of crystal technology. Available at: https://goochandhousego.com/wp-content/uploads/2013/12/4200_UV_97_002890_02_Rev_A.pdf (accessed 21.05.2019).

15. CCD area image sensor S12101. Available at: https://www.hamamatsu.com/resources/pdf/ssd/s12101_kmpd1176e.pdf (accessed 02.04.2019).

16. IT-L7-04096 4K trilinear RDB CMOS. Available at: https://www.teledynedalsa.com/en/products/imaging/image-sensors/it-l7-04096-4k-trilinear-rgb-cmos/ (accessed 02.04.2019).

17. Aronov L. A., Ushakov V. N. Quadrature Components Forming Method for Homodyne Acousto-Optic Spectrum Analyzer. Journal of the Russian Universities. Radioelectronics. 2019, vol. 22, no. 2, pp. 53–61. doi: 10.32603/1993-8985-2019-22-2-53-61

18. Egorov Yu. V., Dmitriev Yu. S., Dernov V. M., Grachev S. V., Odintsov A. Yu., Kruglov I. A., Fedorov B. V. Avtomatizirovannyi akustoopticheskii spektrometr–fazometr s tsifrovoi obrabotkoi dvumernogo svetovogo raspredeleniya. Akustoopticheskie ustroistva obrabotki informatsii [Automated Acousto-Optic Spectrometer – Phase Meter with Digital Processing of a Two-Dimensional Light Distribution. Acoustic-Optical Information Processing Devices]. Leningrad, FTI, 1989, pp. 73–77. (In Russ.)

19. Photodiode arrays with amplifiers. Available at: https://www.hamamatsu.com/resources/pdf/ssd/s11865-64g_etc_kmpd1135e.pdf (accessed 02.04.2019).

20. IT-K1-16480 16K Single Line Monochrome CMOS. Available at: https://www.teledynedalsa.com/en/products/imaging/image-sensors/it-k1-16480-16k-single-linemonochrome-cmos/ (accessed 02.04.2019)


Review

For citations:


Aronov L.A., Dobrolenskii Yu.S., Ushakov V.N. ON USING PERIODIC REFERENCE SIGNAL IN HOMODYNE ACOUSTO-OPTIC SPECTRUM ANALYZER. Journal of the Russian Universities. Radioelectronics. 2019;22(3):97-105. https://doi.org/10.32603/1993-8985-2019-22-3-97-105

Views: 770


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1993-8985 (Print)
ISSN 2658-4794 (Online)