Preview

Journal of the Russian Universities. Radioelectronics

Advanced search

DESIGN OF LENS ANTENNA WITH PLANAR ORTHOMODE TRANSDUCER FOR 28 GHZ FIXED SERVICE COMMUNICATION SYSTEMS

https://doi.org/10.32603/1993-8985-2019-22-3-48-62

Abstract

Introduction. Millimeter-wave frequency range can provide utilization of wide transmission frequency bands and therefore a significant increase of the capacity in modern communication systems. One of the main concerns in the design of the 27.5…29.5 GHz-wave communication system is a high gain antenna of the range of 30 dBi to compensate the significant level of radio signal attenuation in the communication channel compared to the traditional frequency bands below 6 GHz.
Objective. Development of the integrated lens antenna with the ability to operate on two orthogonal linear polarizations to separate the transmitted and received signals by polarization and, therefore, to create more efficient use of the spectrum. At the same time, an important task is to provide a high aperture efficiency of the antenna and a low level of insertion loss in the distribution system, which should have an interface based on printed transmission lines for connection to the radio frequency circuit elements realized on the printed circuit board.
Materials and methods. The main method of the analysis of the lens antenna characteristics is full-wave electromagnetic simulation in the computer-aided design system CST Microwave Studio. The results are confirmed with experimental samples measurement.
Results. The designed antenna is an integrated lens antenna consisting of a homogeneous semi-elliptical dielectric lens with a diameter of D = 120 mm with a cylindrical extension and a primary radiator based on a microstrip antenna with a waveguide adapter. Waveguide adapter radiating opening dimensions were optimized using an analytical method based on a combination of geometrical and physical optics. Two orthogonal polarizations are excited on the primary microstrip patch antenna with the corresponding closely spaced “H-type” slots in one internal metallization layer. According to experimental results, the designed antenna provides the gain level of 29.5…30.2 dBi with a halfpower beamwidth of 4.8…5.1 degrees and cross-polarization level exceeding 37 dB for both polarizations in the whole frequency band of 27.5…29.5 GHz.
Conclusion. The simplicity of the design, high aperture efficiency and the ability to operate on two orthogonal linear polarizations show that the developed lens antenna can be successfully used in radio communication systems of the 27.5…29.5 GHz frequency range.

About the Author

Andrey V. Mozharovskiy
LLC "Radio Gigabit"
Russian Federation

Andrey V. Mozharovskiy Engineer (2011) in Information Systems and Technologies (Lobachevsky State University of Nizhny Novgorod). Doctoral candidate of the Department of micro radio electronics and radio technology of Saint Petersburg Electro-technical University "LETI". Senior microwave systems and antennas engineer in LLC "Radio Gigabit". The author of 27 scientific publications. Area of expertise: various millimeter wavelength range antenna and feeding systems, including printed, waveguide and lens antennas and antenna arrays; planar and waveguide duplexing devices and filters.

95, bldg 2, Osharskaya Str., 603105, Nizhny Novgorod



References

1. Decision of The State Commission for Radio Frequencies 25.06.2007 no 07-21-01-001. About the use of radio frequency bands in the 1.5 GHz and 28 GHz bands by radio electronic means of fixed civil access for civilian use. Available at: http://www.rfs-rf.ru/upload/medialibrary/fc3/018816.doc (accessed: 22.02.2019) (In Russ.)

2. Recommendation ITU-R F.748-4 (05/2001). Radiofrequency arrangements for systems of the fixed service operating in the 25, 26 and 28 GHz bands. Available at: https://www.itu.int/dms_pubrec/itu-r/rec/f/R-REC-F.748-4-200105-I!!PDF-E.pdf (accessed: 22.02.2019)

3. Harmonized European Standard ETSI EN 302 326- 3 V1.3.1 (2008-02). Fixed Radio Systems; Multipoint Equipment and Antennas; Part 3: Harmonized EN covering the essential requirements of article 3.2 of the R&TTE Directive for Multipoint Radio Antennas. Available at: https://www.etsi.org/deliver/etsi_en/302300_302399/30232603/01.03.01_60/en_30232603v010301p.pdf (accessed: 22.02.2019)

4. Rappaport T. S., Sun Sh., Mayzus R., Zhao H., Azar Y., Wang K., Wong G. N., Schulz J. K., Samimi M., Gutierrez F. Millimeter Wave Mobile Communications for 5G Cellular: It Will Work! IEEE Access. 2013, vol. 1, no. 1, pp. 335–349. doi: 10.1109/ACCESS.2013.2260813

5. Wells J. Faster than fiber: The future of multi-G/s wireless. IEEE Microwave Magazine. 2009, vol. 10, iss. 3, pp. 104–112. doi: 10.1109/MMM.2009.932081

6. Al-Hourani A., Chandrasekharan S., Kandeepan S. Path loss study for millimeter wave device-to-device communications in urban environment. IEEE International Conference on Communications Workshops (ICC). 10-14 June 2014. Sydney, Australia. 2014. Piscataway, IEEE, pp. 102–107. doi: 10.1109/ICCW.2014.6881180

7. Recommendation ITU-R P.676-11 (09/2016) "Attenuation by atmospheric gases". Available at: https://www.itu.int/dms_pubrec/itu-r/rec/p/R-REC-P.676-11-201609-I!!PDF-E.pdf (accessed: 22.02.2019)

8. Qingling Z., Li J. Rain Attenuation in Millimeter Wave Ranges. 7th Intern. Symp. on Antennas, Propagation and EM Theory. 26–29 Oct. 2006. Guilin, China. Piscataway, IEEE, 2006, pp. 1–4. doi: 10.1109/ISAPE.2006.353538

9. Recommendation ITU-R P.838-3 (03/2005). Specific attenuation model for rain for use in prediction methods. Available at: https://www.itu.int/dms_pubrec/itur/rec/p/R-REC-P.838-3-200503-I!!PDF-E.pdf (accessed: 22.02.2019)

10. Recommendation ITU-R P.837-7 (06/2017). Characteristics of precipitation for propagation modelling. Available at: https://www.itu.int/dms_pubrec/itu-r/rec/p/R-REC-P.837-7-201706-I!!PDF-E.pdf (accessed: 22.02.2019)

11. Boccardi F., Heath R. W., Lozano A., Marzetta T. L., Popovski P. Five Disruptive Technology Directions for 5G. IEEE Communications Magazine, 2014, vol. 52, iss. 2, pp. 74–80. doi: 10.1109/MCOM.2014.6736746

12. Kibaroglu K., Sayginer M., Phelps T., Rebeiz G. M. A 64-Element 28-GHz Phased-Array Transceiver With 52- dBm EIRP and 8–12-Gb/s 5G Link at 300 Meters Without Any Calibration. IEEE Transactions on Microwave Theory and Techniques. 2018, vol. 66, iss. 12, pp. 5796–5811. doi: 10.1109/TMTT.2018.2854174

13. Churkin S., Mozharovskiy A., Artemenko A., Maslennikov R. Microstrip patch antenna arrays with fan-shaped 90 and 45-degree wide radiation patterns for 28 GHz MIMO applications. 12th European Conf. on Antennas and Propagation (EuCAP). 9-13 April 2018. London, UK. 2018, pp. 1–5. doi: 10.1049/cp.2018.1204

14. Ohtsuk M., Takahashi T., Konishi Y., Urasaki S., Harada K. A dual-polarized planar array antenna for Kuband satellite communications. IEEE Antennas and Propagation Society International Symposium Digest. Antennas: Gateways to the Global Network. Held in conjunction with: USNC/URSI National Radio Science Meeting. 21–26 June 1998. Atlanta, USA. Piscataway, IEEE, 1998, pp. 16–19. doi: 10.1109/APS.1998.698732

15. Diawuo H. A., Jung Y.-B. Broadband ProximityCoupled Microstrip Planar Antenna Array for 5G Cellular Applications. IEEE Antennas and Wireless Propagation Letters, 2018, vol. 17, iss. 7, pp. 1286–1290. doi: 10.1109/LAWP.2018.2842242

16. Hamberger G. F., Drexler A., Trummer S., Siart U., Eibert T. F. A planar dual-polarized microstrip 1Dbeamforming antenna array for the 24GHz ISM-band. 10th European Conf. on Antennas and Propagation (EuCAP). 10-15 April 2016. Davos, Switzerland. Piscataway, IEEE, 2016, pp. 1–5. doi: 10.1109/EuCAP.2016.7481205

17. Zhang L., Li L., Yi H. Design of a Traveling Wave Slot Array on Substrate Integrated Waveguide for 24GHz Traffic Monitoring. Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC). 21–24 July 2018. Xuzhou, China. Piscataway, IEEE, 2018, pp. 1–3. doi: 10.1109/CSQRWC.2018.8455559

18. Chang Y.-L., Jiao Y.-C., Zhang L., Chen G., Qiu X. A K-band series-fed microstip array antenna with low sidelobe for anticollision radar application. Sixth Asia-Pacific Conference on Antennas and Propagation (APCAP). 16- 19 Oct. 2017. Xi'an, China. Piscataway, IEEE, 2017, pp. 1–3. doi: 10.1109/APCAP.2017.8420878

19. Sakakibara K., Shida K., Mouri Y., Kikuma N. Center-fed traveling-wave microstrip array antenna using elliptically-shaped radiating elements in quasi millimeter-wave band. IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting. 9-14 July 2017. San Diego, USA. Piscataway, IEEE, 2017, pp. 2609–2610. doi: 10.1109/APUSNCURSINRSM.2017.8073347

20. Mozharovskiy A., Churkin S., Artemenko A., Maslennikov R. 28 GHz waveguide antennas with fanshaped patterns for base stations MIMO applications. 12th European Conference on Antennas and Propagation (EuCAP). 9-13 April 2018. London, UK. 2018, pp. 1–5. doi: 10.1049/cp.2018.0373

21. Dufilie P. A. A Ka-band Dual-Pol Monopulse Shaped Reflector Antenna. IEEE International Symposium on Antennas and Propagation and USNC/URSI National Radio Science Meeting. 8-13 July 2018. Boston, USA. Piscataway, IEEE, 2018, pp. 1717–1718. doi: 10.1109/APUSNCURSINRSM.2018.8608180

22. Filipovic D. F., Gearhart S. S., Rebeiz G. M. Double-Slot Antennas on Extended Hemispherical and Elliptical Silicon Dielectric Lenses. IEEE Transactions on Microwave Theory and Techniques. 1993, vol. 41, no. 10, pp. 1738–1749. doi: 10.1109/22.247919

23. Artemenko A., Maltsev A., Mozharovskiy A., Sevastyanov A., Ssorin V. Millimeter-Wave Electronically Steerable Integrated Lens Antennas for WLAN/WPAN Applications. IEEE Transactions on Antennas Propagation. 2013, vol. 61, pp. 1665–1671. doi: 10.1109/TAP.2012.2232266

24. Mozharovskiy A., Artemenko A., Ssorin V., Maslennikov R., Sevastyanov A. High gain millimeterwave lens antennas with improved aperture efficiency. 9th European Conference on Antennas and Propagation (EuCAP). 13-17 April 2015, Lisbon, Portugal. Piscataway, IEEE, 2015, pp. 1–5.

25. Boriskin A. V., Sauleau R., Nosich A. I. Performance of Hemielliptic Dielectric Lens Antennas With Optimal Edge Illumination. IEEE Transactions on Antennas Propagation. 2009, vol. 57, no. 7, pp. 2193–2198. doi: 10.1109/TAP.2009.2021979

26. Golub' V. D., Myskov A. S., Mozharovskii A. V., Artemenko A. A., Maslennikov R. O. Razrabotka i optimizatsiya antennoi reshetki obluchatelei dlya skaniruyushchei linzovoi antenny chastotnogo diapazona 71–76 GGts [Development and optimization of the antenna array of irradiators for a scanning lens antenna of the frequency range 71-76 GHz]. Conference Proc. Antennas and the Distribution of Radio Waves. St. Petersburg, 2018, pp. 112–116 (In Russ.)

27. Mozharovskii A. V., Artemenko A. A., Mal'tsev A. A., Maslennikov R. O., Sevast'yanov A. G., Ssorin V. N. An effective method for calculating the characteristics of integrated lens antennas based on geometrical and physical optical approximations. Radiophysics and Quantum Electronics. 2015, vol. 58, no. 6, pp. 492–504. (In Russ.)

28. Lee H. Y., Jun D. S., Moon S. E., Kim E. K., Park J. H., Park K. H. Wideband aperture coupled stacked patch type microstrip to waveguide transition for V-band. IEEE Proc. of Asia-Pacific Microwave Conf. 12-15 Dec. 2006. Yokohama, Japan. Picataway, IEEE, 2006, pp. 360–362. doi: 10.1109/APMC.2006.4429440

29. Artemenko A. A., Maslennikov R. O., Sevast'yanov A. G., Ssorin V. N. Volnovodno-mikropoloskovyi perekhod v chastotnom diapazone 60 GGts [Waveguide-microstrip junction in the 60 GHz frequency range]. 19th Intern. Crimean Conf. Microwave Engineering and Telecommunication Technologies, 2009, pp. 505–506. (In Russ.)

30. Artemenko A., Maltsev A. , Maslennikov R., Sevastyanov A., Ssorin V. Design of wideband waveguide to microstrip transition for 60 GHz frequency band. Proc. of 41st European Microwave Conf. (EuMC). 10-13 Oct. 2011. Manchester, UK. Piscataway, IEEE, 2011, pp. 838–841. doi: 10.23919/EuMC.2011.6101966

31. Soykin O., Artemenko A., Ssorin V., Mozharovskiy A., Maslennikov R. Wideband Probe-Type Waveguide-toMicrostrip Transition for V-band Applications. Proc. of 46th European Microwave Conf. (EuMC). 4-6 Oct. 2016. London, UK. Piscataway, IEEE, 2016, pp. 1–4. doi: 10.1109/EuMC.2016.7824262

32. Felbecker R., Keusgen W., Peter M. Estimation of Permittivity and Loss Tangent of High Frequency Materials in the Millimeter Wave. IEEE Intern. Conf. on Microwaves, Communications, Antennas and Electronics Systems (COMCAS). 7-9 Nov. 2011. Tel Aviv, Israel. Piscataway, IEEE, 2011, pp. 1–8. doi: 10.1109/COMCAS.2011.6105829

33. Horn A. Dielectric constant and loss of selected grades of Rogers high frequency circuit substrates from 1- 50 GHz. Rogers Corporation Technical Report 5788, 2003.


Review

For citations:


Mozharovskiy A.V. DESIGN OF LENS ANTENNA WITH PLANAR ORTHOMODE TRANSDUCER FOR 28 GHZ FIXED SERVICE COMMUNICATION SYSTEMS. Journal of the Russian Universities. Radioelectronics. 2019;22(3):48-62. https://doi.org/10.32603/1993-8985-2019-22-3-48-62

Views: 1060


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1993-8985 (Print)
ISSN 2658-4794 (Online)