Analytical Dispersion Theory for Optical Waves in Regular Microwaveguides
https://doi.org/10.32603/1993-8985-2018-21-3-71-78
Abstract
About the Authors
N. A. CheplaginRussian Federation
Nikolay A. Cheplagin – Master’s Degree of Techniques and Technology in Electronics and Micro-Electronics (2012), postgraduate student of the Department of Physical Electronics and Technology of Saint Petersburg Electrotechnical University "LETI". The author of one scientific publication. Area of expertise: microwave photonics.
5, Professor Popov Str., 197376, St. Petersburg.
G. A. Zaretskaya
Russian Federation
Galina A. Zaretskaya – Master’s Degree of Techniques and Technology in Electronics and Micro-Electronics (2012), postgraduate student of the department of Physical Electronics and Technology of Saint Petersburg Electrotechnical University "LETI". The author of six scientific publications. Area of expertise: microwave photonics.
5, Professor Popov Str., 197376, St. Petersburg.
B. A. Kalinikos
Russian Federation
Boris A. Kalinikos – Ph.D. and D.Sc. in physics and mathematics (1985), Professor (1989), Head of the Department of Physical Electronics and Technology of Saint Petersburg Electrotechnical University "LETI". The author of more than 300 scientific publications. Area of expertise: microwave linear and nonlinear processes in magnetics, as well as related phenomena; solitons, nonlinear wave dynamics and chaos; microwave microelectronics; microwave photonics.
5, Professor Popov Str., 197376, St. Petersburg.
References
1. Capmany J., Novak D. Microwave Photonics Combines Two Worlds. Nature Photonics. 2007, vol. 1, pp. 319–330. doi: 10.1038/nphoton.2007.89.
2. Capmany J. Microwave Photonic Signal Processing. Journal of Lightwave Technology. 2013, vol. 31, no. 4, pp. 571–586. doi: 10.1109/JLT.2012.2222348.
3. Iezekiel S., Burla M., Klamkin J., Marpaung D., Capmany J. RF Engineering Meets Optoelectronics: Progress in Integrated Microwave Photonics. IEEE Microwave Magazine. 2015, vol. 16, no. 8, pp. 28–45. doi: 10. 1109/MMM.2015.2442932.
4. Carpintero G., Balakier K., Yang Z., Guzmán R. C., Corradi A., Jimenez A., Kervella G., Fice M. J., Lamponi M., Chitoui M., van Dijk F., Renaud C. C., Wonfor A., Bente E. A. J. M., Penty R. V., White I. H., Seeds A. J. Microwave Photonic Integrated Circuits for Millimeter-Wave Wireless Communications. Journal of Lightwave Technology. 2014, vol. 32, no. 20, pp. 3495–3501.
5. Zhang W., Yao J. Silicon-Based Integrated Microwave Photonics. IEEE Journal of Quantum Electronics. 2016, vol. 52, no. 1, pp. 1–12. doi: 10.1109/JQE.2015.2501639.
6. Bao C., Liao P., Kordts A., Zhang L., Karpov M., Pfeiffer M. H. P., Cao Y., Yan Y., Almaiman A., Xie G., Mohajerin-Ariaei A., Li L., Ziyadi M., Wilkinson S. R., Tur M., Kippenberg T. J., Willner A. E. Dual-Pump Generation of High-Coherence Primary Kerr Combs with Multiple SubLines. Optics Letters. 2017, vol. 42, pp. 595–598. doi: 10. 1364/OL.42.000595.
7. Levy J. S., Gondarenko A., Foster M. A., TurnerFoster A. C., Gaeta A. L., Lipson M. CMOS-Compatible Multiple-Wavelength Oscillator for On-Chip Optical Interconnects. Nature Photonics. 2010, vol. 4, no. 1, pp. 37– 40. doi: 10.1038/nphoton.2009.259.
8. Goell J. E. A Circular‐Harmonic Computer Analysis of Rectangular Dielectric Waveguides. Bell Labs Technical Journal. 1969, vol. 48, no. 7, pp. 2133–2160. doi: 10.1002/j.1538-7305.1969.tb01168.x.
9. Wang Y., Vassallo C. Circular Fourier Analysis of Arbitrarily Shaped Optical Fibers. Optics Letters. 1989, vol. 14, no. 24, pp. 1377–1379. doi: 10.1364/OL.14.001377.
10. Eyges L., Gianino P., Wintersteiner P. Modes of Dielectric Waveguides of Arbitrary Cross Sectional Shape. Journal of the Optical Society of America. 1979, vol. 69, no. 9, pp. 1226–1235. doi: 10.1364/JOSA.69.001226.
11. Clark D. F., Dunlop I. Method For Analyzing Trapezoidal Optical Waveguides By An Equivalent Rectangular Rib Waveguide. Electronics Letters. 1988, vol. 24, no. 23, pp. 1414–1415. doi: 10.1049/el:19880966.
12. Barybin A. A. Elektrodinamika volnovedushchikh struktur [Electrodynamics of Waveguiding Structures]. Moscow, Fizmatlit, 2007, 512 p. (In Russian)
13. Chiang K. S. Review of Numerical and Approximate Methods for the Modal Analysis of General Optical Dielectric Waveguides. Optical and Quantum Electronics. 1994, vol. 26, no. 3, pp. S113–S134. doi: 10.1007/BF00384667.
14. Czendes Z. J., Silvester P. Numerical Solution of Dielectric Loaded Waveguides: I-Finite-Element Analysis. Microwave Theory Tech. IEEE Trans. 1970, vol. MTT-18, pp. 1124.
15. Xu F., Zhao K., Lu M. Analysis for Dispersion Characteristics of Trapezoidal-Groove Waveguide. International Journal of Infrared and Millimeter Waves. 1996, vol. 17, no. 2, pp. 403–413. doi: 10.1007/BF02088163.
16. Marcatili E. A. J. Dielectric Rectangular Waveguide and Directional Coupler for Integrated Optics. Bell Labs Technical Journal. 1969, vol. 48, no. 7, pp. 2071–2102. doi: 10.1002/j.1538-7305.1969.tb01166.
17. Menon V. J., Bhattacharjee S., Dey K. K. The Rectangular Dielectric Waveguide Revisited. Optics Communications. 1991, vol. 85, no. 5–6, pp. 393–396. doi: 10. 1016/0030-4018(91)90570-4.
18. Weinstein L. A. Elektromagnitnye volny [Electromagnetic Waves]. Moscow, AST, 1988, 440 p. (In Russian)
19. Katsenelbaum B. Z. Vysokochastotnaya elektrodinamika [High Frequency Electrodynamics]. Moscow, Nauka, 1966, 240 p. (In Russian)
20. Yariv A, Yeh P. Optical waves in crystals. New York, Wiley, 1984, 589 p.
21. Haus H. A., Huang W. Coupled-Mode Theory. Proceedings of the IEEE. 1991, vol. 79, no. 10, pp. 1505– 1518. doi: 10.1109/5.104225.
Review
For citations:
Cheplagin N.A., Zaretskaya G.A., Kalinikos B.A. Analytical Dispersion Theory for Optical Waves in Regular Microwaveguides. Journal of the Russian Universities. Radioelectronics. 2018;(3):71-78. https://doi.org/10.32603/1993-8985-2018-21-3-71-78